首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental data indicate that moderate uncoupling oxidative phosphorylation induces reduction in production of reactive oxygen species (ROS) and promotes an increase in survival of neurons and cardiomyocytes under hypoxia and re-oxygenation conditions. Uncoupling proteins (UCP) are expressed by cardiomyocytes and neurons. These proteins are involved in the thermogenesis, inhibit ROS generation by mitochondria, reduce deltaphi, elevate respiration rate of these organelles. It was established that UCP contributed to the elevation of cardiomyocyte and neuron tolerance of an impact of hypoxia and re-oxygenation. They also promote cell resistance to oxidative stress. Experimental data indicate the important role of the UCP in the neuroprotective and cardioprotective effects of ischemic preconditioning. At the same time, real contribution of the UCP in preconditioning is still to be verified.  相似文献   

2.
Lysosome-related organelles (LROs) are synthesized in specialized cell types where they largely coexist with conventional lysosomes. Most of the known cellular transport machinery involved in biogenesis are ubiquitously expressed and shared between lysosomes and LROs. Examples of common components are the adaptor protein complex-3 (AP-3) and biogenesis of lysosome-related organelle complex (BLOC)-2. These protein complexes control sorting and transport of newly synthesized integral membrane proteins from early endosomes to both lysosomes and LROs such as the melanosome. However, it is unknown what factors cooperate with the ubiquitous transport machinery to mediate transport to LROs in specialized cells. Focusing on the melanosome, we show that the ubiquitous machinery interacts with cell type-specific Rab proteins, Rab38 and Rab32, to facilitate transport to the maturing organelle. BLOC-2, AP-3, and AP-1 coimmunoprecipitated with Rab38 and Rab32 from MNT-1 melanocytic cell extracts. BLOC-2, AP-3, AP-1, and clathrin partially colocalized with Rab38 and Rab32 by confocal immunofluorescence microscopy in MNT-1 cells. Rab38- and Rab32-deficient MNT-1 cells displayed abnormal trafficking and steady state levels of known cargoes of the BLOC-2, AP-3, and AP-1 pathways, the melanin-synthesizing enzymes tyrosinase and tyrosinase-related protein-1. These observations support the idea that Rab38 and Rab32 are the specific factors that direct the ubiquitous machinery to mediate transport from early endosomes to maturing LROs. Additionally, analysis of tyrosinase-related protein-2 and total melanin production indicates that Rab32 has unique functions that cannot be carried out by Rab38 in melanosome biogenesis.  相似文献   

3.
4.
Low body weight and cardiac tolerance to ischemia in neonatal rats   总被引:1,自引:0,他引:1  
Adaptation to intermittent high altitude hypoxia (IHAH) increases tolerance of the isolated neonatal rat heart to ischemia and potentiates protection induced by ischemic preconditioning. In addition to the protective effect, IHAH significantly reduces growth of the animals. The aim of the present study was, therefore, to find out whether low body weight per se might influence cardiac sensitivity to oxygen deprivation. Low body weight was induced either by IHAH (barochamber, 8 h/day, 5000 m) from postnatal day 1 to 10 (HLBW), or by a higher number of sucklings per mother (14 instead of 8), again from postnatal day 1 to 10 (NLBW). Control animals (8 littermates per mother) were kept under normoxic conditions (Controls). The recovery of developed force following 40 min of global ischemia was measured in isolated hearts from 10-day-old rats by perfusing them in the Langendorff mode with Krebs-Henseleit solution at constant pressure, temperature and rate. Ischemic preconditioning was induced by three 3-min periods of global ischemia, each separated by 5-min periods of reperfusion. Low body weight in HLBW and NLBW groups was accompanied by increased hematocrit, and decrease in absolute heart weight (both wet and dry) and developed force. On the other hand, higher hydration, increased cardiac tolerance to ischemia and potentiation of protection by ischemic preconditioning were observed in HLBW rats only. This experimental group also exhibited the highest relative heart weight. It may be concluded that low body weight alone does not influence cardiac tolerance to ischemia in neonatal rats.  相似文献   

5.
Mitochondrial Ca(2+) uptake is crucial for the regulation of the rate of oxidative phosphorylation, the modulation of spatio-temporal cytosolic Ca(2+) signals and apoptosis. Although the phenomenon of mitochondrial Ca(2+) sequestration, its characteristics and physiological consequences have been convincingly reported, the actual protein(s) involved in this process are unknown. Here, we show that the uncoupling proteins 2 and 3 (UCP2 and UCP3) are essential for mitochondrial Ca(2+) uptake. Using overexpression, knockdown (small interfering RNA) and mutagenesis experiments, we demonstrate that UCP2 and UCP3 are elementary for mitochondrial Ca(2+) sequestration in response to cell stimulation under physiological conditions - observations supported by isolated liver mitochondria of Ucp2(-/-) mice lacking ruthenium red-sensitive Ca(2+) uptake. Our results reveal a novel molecular function for UCP2 and UCP3, and may provide the molecular mechanism for their reported effects. Moreover, the identification of proteins fundemental for mitochondrial Ca(2+) uptake expands our knowledge of the physiological role for mitochondrial Ca(2+) sequestration.  相似文献   

6.
Uncoupling proteins 1 and 3 are regulated differently   总被引:3,自引:0,他引:3  
Hagen T  Zhang CY  Vianna CR  Lowell BB 《Biochemistry》2000,39(19):5845-5851
Using a heterologous yeast expression system, we have previously found a marked discordance between the effects of uncoupling protein (UCP) 1 and UCP3L on basal O(2) consumption in whole yeast versus isolated mitochondria. In whole yeast, UCP3L produces a greater stimulation of basal O(2) consumption, while in isolated mitochondria, UCP1 produces a much greater effect. As shown previously and in this report, UCP3L, in contrast to UCP1, is not inhibited by purine nucleotides. In the present study, we addressed two hypothetical mechanisms that could account for the observed discordance: (i) in whole yeast, purine nucleotides inhibit UCP1 but not UCP3L and (ii) preparations of isolated mitochondria lack an activator of UCP3L that is normally present in vivo. By use of a mutant of UCP1 that lacks purine nucleotide inhibition, it is demonstrated that cytosolic concentrations of purine nucleotides present in yeast effectively inhibit UCP1 activity. This suggests that the lower activity of UCP1 compared to UCP3L in whole yeast is due to purine nucleotide inhibition of UCP1 but not UCP3L. As potential activators of UCP3L we tested free fatty acids in whole yeast and isolated mitochondria. While UCP1 was strongly activated by free fatty acids, no stimulatory effect on UCP3L was observed. In summary, this study indicates that UCP1 and UCP3L differ in their regulation by purine nucleotides and free fatty acids. This different regulation may be related to different physiological functions of the two proteins.  相似文献   

7.
Uncoupling proteins (UCPs) are members of the superfamily of the mitochondrial anion carrier proteins (MATP). Localized in the inner membrane of the organelle, they are postulated to be regulators of mitochondrial uncoupling. UCP2 and 3 may play an important role in the regulation of thermogenesis and, thus, on the resting metabolic rate in humans. To identify interacting proteins that may be involved in the regulation of the activity of UCPs, the yeast two-hybrid system was applied. Segments of hUCP2 containing the hydrophilic loops facing the intermembrane space, or combinations of these, were used to screen an adipocyte activation domain (AD) fusion library. The 14.3.3 protein isoforms theta, beta, zeta were identified as possible interacting partners of hUCP2. Screening of a human skeletal muscle AD fusion library, on the other hand, yielded several clones all of them encoding the gamma isoform of the 14.3.3 family. Mapping experiments further revealed that all these 14.3.3 proteins interact specifically with the C-terminal intermembrane space domain of both hUCP2 and hUCP3 whereas no interactions could be detected with the C-terminal part of hUCP1. Direct interaction between UCP3 and 14.3.3 theta could be demonstrated after in vitro translation by coimmunoprecipitation. When coexpressed in a heterologous yeast system, 14.3.3 proteins potentiated the inhibitory effect of UCP3 overexpression on cell growth. These findings suggest that 14.3.3 proteins could be involved in the targeting of UCPs to the mitochondria.  相似文献   

8.
Coronary artery occlusion (45 min) and reperfusion (2 h) were modeled in vivo in anesthetized artificially ventilated Wistar rats. Total ischemia (45 min) and reperfusion (30 min) of the isolated rat heart were performed in vitro. The selective agonist of cannabinoid (CB) receptors HU-210 was injected intravenously at a dose of 0.1 mg/kg 15 min prior to the coronary artery ligation. The selective CB1 antagonist SR141716A and the selective CB2 antagonist SR144528 were injected intravenously 25 min prior to ischemia. In vitro, HU-210 and SR141716A were added to the perfusion solution at the final concentrations of 0.1 μM prior to total ischemia. Preliminary injection of HU-210 reduced the infarct size-to-area at risk (IS/AAR) ratio in vivo. This cardioprotective effect was completely abolished by SR141716A but remained after SR144528 injection. Both antagonists had no effect on the IS/AAR ratio. Preliminary injection of the KATP channel blocker glibenclamide did not abolish the cardioprotective effect of HU-210. The addition of HU-210 prior to ischemia reduced the creatine phosphokinase (CPK) level in the coronary effluent and decreased left ventricular developed pressure. SR141716A alone had no effect on cardiac contractility and CPK levels. These results suggest that cardiac CB1 receptor activation increases cardiac tolerance to ischemia-reperfusion and has a negative effect on the cardiac pump function. Endogenous cannabinoids are not involved in the regulation of cardiac contractility and tolerance to ischemia and reperfusion. ATP-sensitive kATP-channels are not involved in the mechanism of the cardioprotective effect of HU-210.  相似文献   

9.
10.
Energy balance in animals is a metabolic state that exists when total body energy expenditure equals dietary energy intake. Energy expenditure, or thermogenesis, can be subcategorized into groups of obligatory and facultative metabolic processes. Brown adipose tissue (BAT), through the activity of uncoupling protein 1 (UCP1), is responsible for nonshivering thermogenesis, a major component of facultative thermogenesis in newborn humans and in small mammals. UCP1, found in the mitochondrial inner membrane in BAT, uncouples energy substrate oxidation from mitochondrial ATP production and hence results in the loss of potential energy as heat. Mice that do not express UCP1 (UCP1 knockouts) are markedly cold sensitive. The recent identification of four new homologs to UCP1 expressed in BAT, muscle, white adipose tissue, brain, and other tissues has been met by tremendous scientific interest. The hypothesis that the novel UCPs may regulate thermogenesis and/or fatty acid metabolism guides investigations worldwide. Despite several hundred publications on the new UCPs, there are a number of significant controversies, and only a limited understanding of their physiological and biochemical properties has emerged. The discovery of UCP orthologs in fish, birds, insects, and even plants suggests the widespread importance of their metabolic functions. Answers to fundamental questions regarding the metabolic functions of the new UCPs are thus pending and more research is needed to elucidate their physiological functions. In this review, we discuss recent findings from mammalian studies in an effort to identify potential patterns of function for the UCPs.  相似文献   

11.
In both humans and animals sleep deprivation (SD) produces an increase in food intake and in energy expenditure (EE). The increase in EE is a core element of the SD syndrome and, in rats, is negatively correlated with survival rate. However, the mechanisms involved are not understood. A large component of resting EE is accounted for by the mitochondrial proton leak, which is mediated by uncoupling proteins (UCPs). We measured UCP2, UCP3, and UCP5 mRNA levels in rats during the spontaneous sleep/waking cycle and after short (8 hours) and long (7 days) SD. During spontaneous sleep and waking there was no change in the level of mitochondrial uncoupling as measured by UCPs expression, either in the brain or in peripheral tissues. During SD, by contrast, UCP3 expression in skeletal muscle was elevated, but the increase was similar, compared to sleep, after both short-term and long-term SD. UCP2 expression, on the other hand, was strongly increased in the liver and skeletal muscle of long-term sleep deprived animals and much less so, or not at all, in yoked controls or in rats that lost only 8 hours of sleep. Since the skeletal muscle is the largest tissue in the body, an elevated muscular expression of UCP2 is likely to affect the overall resting EE and may thus contribute to its increase after SD.  相似文献   

12.
The cardioprotective, inotropic, and antiarrhythmic effects of U-50.488, a selective agonist of κ1 opioid receptors (κ1 ORs), was studied using the model of 45-min total ischemia and 30-min reperfusion of isolated rat heart. Cardiac κ1 ORs were stimulated by adding U-50.488 to the perfusing solution up to the final concentration of 0.1 or 1 μmol/l. The opioid had no influence on the incidence of reperfusion arrhythmias. The addition of 0.1 μmol/l U-50.488 reduced the reperfusion release of creatine phosphokinase (CPK) by half, which positively correlated with the decrease in the myocardial cAMP content (r = 0.89, p < 0.01). At the same time, the addition of U-50.488 in the higher concentration (1 μmol/l) had no effect on either cAMP level or CPK release. These results indicate that the cardioprotective effect of U-50.488 may be connected with the reduction of myocardial cAMP content. Activation of κ1 ORs caused a decrease in both frequency and amplitude of myocardial contractions. The negative inotropic and chronotropic effect of U-50.488 was shown to be independent of changes in the myocardial cAMP content. A hypothesis is proposed that the absence of any cardioprotective effect of U-50.488 at the higher concentration (1 μmol/l) is accounted for by its interaction with unknown nonopioid receptors of cardiac myocytes.  相似文献   

13.
Cardioprotective, inotropic, and antiarrhythmic effects of the selective agonist of κ1 opioid receptors (κ1-ORs) U-50.488H have been studied after 45-min global ischemia and 30-min reperfusion of isolated perfused rat hearts. The heart κ1-ORs were stimulated by adding 0.1 or 1 μmol/l U-50.488H to the perfusion solution. The opioid did not affect the frequency of reperfusion arrhythmias. At a concentration of 0.1 μmol/l, it induced a twofold decrease in the reperfusion release of creatine phosphokinase (CPK), which positively correlated with a decrease in the myocardial cAMP level (r = 0.89, p < 0.01). Application of U-50.488H at a final concentration of 1 μmol/l did not change the cAMP level and CPK release. These results suggest that the cardioprotective effect of U-50.488H is due to a decrease in the level of cAMP in cardiomyocytes. Activation of κ1-ORs decreased the frequency and force of myocardial contractions. It has been shown that the negative inotropic and chronotropic effects of U-50.488H are independent of changes in the myocardial cAMP level. A hypothesis is proposed that the absence of cardioprotective effect of 1μM U-50.488H is a result of activation of nonopioid receptors in cardiomyocytes.  相似文献   

14.
15.
Catecholamine stimulation of alpha1-adrenoceptors exerts growth factor-like activity, mediated by generation of reactive oxygen species, on arterial smooth muscle cells and adventitial fibroblasts and contributes to hypertrophy and hyperplasia in models of vascular injury and disease. Adrenergic trophic activity also contributes to flow-mediated positive arterial remodeling by augmenting proliferation and leukocyte accumulation. To further examine this concept, we studied whether catecholamines contribute to collateral growth and angiogenesis in hindlimb insufficiency. Support for this hypothesis includes the above-mentioned studies, evidence that ischemia augments norepinephrine release from sympathetic nerves, and proposed involvement of reactive oxygen species in angiogenesis and collateral growth. Mice deficient in catecholamine synthesis [by gene deletion of dopamine beta-hydroxylase (DBH-/-)] were studied. At 3 wk after femoral artery ligation, increases in adductor muscle perfusion were similar in DBH-/- and wild-type mice, whereas recovery of plantar perfusion and calf microsphere flow were attenuated, although not significantly. Preexisting collaterals in adductor of wild-type mice showed increases in lumen diameter (60%) and medial and adventitial thickness (57 and 119%, P < 0.05 here and below). Lumen diameter increased similarly in DBH-/- mice (52%); however, increases in medial and adventitial thicknesses were reduced (30 and 65%). Leukocyte accumulation in the adventitia/periadventitia of collaterals was 39% less in DBH-/- mice. Increased density of alpha-smooth muscle actin-positive vessels in wild-type adductor (45%) was inhibited in DBH-/- mice (2%). Although both groups experienced similar atrophy in the gastrocnemius (approximately 22%), the increase in capillary-to-muscle fiber ratio in wild-type mice (21%) was inhibited in DBH-/- mice (7%). These data suggest that catecholamines may contribute to collateral growth and angiogenesis in tissue ischemia.  相似文献   

16.
Ouyang YB  Giffard RG 《Cell calcium》2004,36(3-4):303-311
Mitochondria are central to brain cell response to ischemia, with critical roles in generation of ATP, production of free radicals, and regulation of apoptotic cell death. Changes in the permeability of the outer mitochondrial membrane to regulators of apoptosis can control ischemic cell death and this permeability is directly controlled by the Bcl-2 family of proteins. The Bcl-2 family regulate apoptosis by several mechanisms including affecting the formation of apoptotic protein-conducting pores in the outer mitochondrial membrane. The anti-apoptotic protein Bcl-2 improves neuron survival following various insults, and is protective even when administered after stroke onset in a rat model of focal ischemia. Despite intense study, the precise molecular mechanisms underlying protection by the anti-apoptotic members of the Bcl-2 family are not completely understood. This review focuses on the mechanisms by which Bcl-2 family members control the permeability of the mitochondrial membrane and influence other aspects of mitochondrial function after brain ischemia, concluding with discussion of the potential use of Bcl-2 for the treatment of cerebral ischemia.  相似文献   

17.
Background: Genistein, a naturally occurring isoflavonic phytoestrogen associated with reduced incidence of heart disease, may be a possible alternative treatment for postmenopausal women with heart disease.Objective: This study examined the effects of genistein on in vitro heart function and ischemic tolerance in ovariectomized (OVX) Sprague-Dawley rats.Methods: To examine the acute effects of genistein on cardiac function, isolated working hearts were perfused under aerobic conditions with increasing concentrations of genistein (10–150 µM). A separate group of OVX rats was used to assess ischemic tolerance: treated rats received genistein (250 mg/kg, dissolved in 200 uL dimethyl sulfoxide [DMSO]) injected once daily for 2 days, and control rats received DMSO only. After treatment, hearts were perfused for 30 minutes under aerobic conditions and then subjected to 20 minutes of global no-flow ischemia by clamping the preload and afterload lines, followed by 30 minutes of reperfusion.Results: Genistein was associated with improvements in mechanical function in OVX rat hearts (n = 5) with maximum increases in contractility (259 mm Hg/sec above baseline) and cardiac output (7 mL/min above baseline) observed with 30 μM of genistein (both, P < 0.05). Relative to baseline, genistein-treated hearts (n = 5) also had greater ischemic tolerance than did control hearts (n = 6) and significant improvements in mean (SEM) recovery of contractility (to 75.0% [9.7%] of preischemic function; P < 0.05) and cardiac output (to 48.8% [12.3%] of preischemic function; P < 0.05) after reperfusion. These effects occurred without significant changes in myocardial levels of nonprotein thiols or thiobarbituric acid reactive substances, although a reduction in mean glucose transporter protein 4 content (13.2% [2.7%]; P < 0.05) was observed in genistein-treated hearts. No significant changes in blood pressure were observed with genistein.Conclusions: Despite the lack of significant changes in physical characteristics, 2-day treatment with genistein was associated with significant cardioprotective effects in OVX rats, suggesting a potential therapeutic role in postmenopausal women.  相似文献   

18.
Glutathionylation has emerged as a key modification required for controlling protein function in response to changes in cell redox status. Recently, we showed that the glutathionylation state of uncoupling protein-3 (UCP3) modulates the leak of protons back into the mitochondrial matrix, thus controlling reactive oxygen species production. However, whether or not UCP3 glutathionylation is mediated enzymatically has remained unknown because previous work relied on the use of pharmacological agents, such as diamide, to alter the UCP3 glutathionylation state. Here, we demonstrate that glutaredoxin-2 (Grx2), a matrix oxidoreductase, is required to glutathionylate and inhibit UCP3. Analysis of bioenergetics in skeletal muscle mitochondria revealed that knock-out of Grx2 (Grx2−/−) increased proton leak in a UCP3-dependent manner. These effects were reversed using diamide, a glutathionylation catalyst. Importantly, the increased leak did not compromise coupled respiration. Knockdown of Grx2 augmented proton leak-dependent respiration in primary myotubes from wild type mice, an effect that was absent in UCP3−/− cells. These results confirm that Grx2 deactivates UCP3 by glutathionylation. To our knowledge, this is the first enzyme identified to regulate UCP3 by glutathionylation and is the first study on the role of Grx2 in the regulation of energy metabolism.  相似文献   

19.
We examined the genetic contribution of single nucleotide polymorphisms (SNPs) of the energy metabolism-related genes, including beta 3 adrenergic receptor (beta3AR), apolipoprotein E (apo-E), promoter of uncoupling protein 3 (UCP3-p), peroxisome proliferator-activated receptor gamma 2 (PPARgamma2) and leptin receptor (LEPR) to metabolic disorders, in 118 inhabitants of Palau. The data were statistically analyzed and ethnically compared to correlate SNPs and their metabolic parameters. UCP3-p (P < 0.01) and PPARgamma2 (p = 0.05) correlated with plasma HbA1c, and UCP3-p correlated with fasting blood glucose (P < 0.01) in males, but not in females. UCP3-p correlated with body fat (%) (P < 0.01) in females, but not in males. Plasma leptin levels and apo-E were correlated in both groups. The frequency of SNPs for PPARgamma2, LEPR, and UCP3-p are significantly different between Palauans and Caucasians.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号