首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.

In this work, a mechanistic model for predicting the dynamic behavior of extracellular and intracellular nutrients, biomass production, and the main metabolites involved in the central carbon metabolism in plant cell cultures of Thevetia peruviana is presented. The proposed model is the first mechanistic model implemented for plant cell cultures of this species, and includes 28 metabolites, 33 metabolic reactions, and 61 parameters. Given the over-parametrization of the model, its nonlinear nature and the strong correlation among the effects of the parameters, a parameter estimation routine based on identifiability analysis was implemented. This routine reduces the parameter’s search space by selecting the most sensitive and linearly independent parameters. Results have shown that only 19 parameters are identifiable. Finally, the model was used for analyzing the fluxes distribution in plant cell cultures of T. peruviana. This analysis shows high uptake of phosphates and parallel uptake of glucose and fructose. Furthermore, it has pointed out the main central carbon metabolism routes for promoting biomass production in this cell culture.

  相似文献   

2.
The problem of transient primary or secondary metabolism remaining a persisting problem in plant cell cultures is discussed. Since secondary metabolites occurred mainly in differentiated tissues, an effort was made to mimic the cell-to-cell contact of multicellular organisms. Sucrose metabolism and indoleglucosinolate production from immobilized cells of Armoracia rusticanawere investigated. Immobilization acted by reducing the assimilation of the hexoses released into the culture medium. Although sucrose hydrolysis occurred prior to uptake, the decrease of acid invertase activity in immobilized cells was accompanied by an increased yield (2–3-fold) of the intracellular sucrose. Glucosinolates accumulated as indolic forms only during the stationary stage of cell growth. Their amount in immobilized cells may be increased 2-fold compared to the control cultures. On the other hand intracellular sucrose concentration declined whilst the cleavage activity of sucrose synthase increased simultaneously with production of indole-3-methyl- and 4-hydroxy-indole-3-methyl-glucosinolates. Thus, the role of cell immobilization in the biosynthesis of indoleglucosinolates is discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Suspension cell cultures of Helianthus annuus L. were previously established for the production of the most active component of vitamin E, alpha-tocopherol, by optimizing medium composition and culture conditions. In the present work, the possibility of enhancing alpha-tocopherol production by the addition of jasmonic acid to the culture medium was investigated both in sunflower and Arabidopsis cell cultures. A considerable increase (49% and 66%, respectively) of alpha-tocopherol production was obtained in both, after a 72-h treatment with 5 microM jasmonic acid. The modulation of alpha-tocopherol levels in plant cell cultures can provide useful hints for a regulatory impact on tocopherol metabolism.  相似文献   

4.
The effect of contact between cells and extractive phase on secondary metabolite production was investigated in two-phase suspension cultures of Eschscholtzia californica. A system was designed to extract benzophenanthridine alkaloids from the cell culture, without contact between XAD-7 resins and the cells: only medium was recirculated through a column packed with the extractive phase. This strategy was compared to the classic method of addition of resins directly into the cell suspension. Removal of the product directly from the medium enabled important increases in production of alkaloids, namely a 20-fold increase in sanguinarine production and a 10-fold increase in chelerythrine, with high recovery in the resin. The recirculation strategy greatly simplified the production process since the resins are easily recovered from the cell culture and enable harvest of product without termination of culture. However, due to limited flow rate, the recirculation strategy was slightly less effective than direct addition of resins into the cell suspension. In addition to enabling increased production, removal of secondary metabolites from the medium changed metabolic flux distribution, testifying to a complex control mechanism of production.  相似文献   

5.
A structured kinetic model is developed to describe the dynamics of hybridoma growth and the production of monoclonal antibodies and metabolic waste products in suspension culture. The crucial details of known metabolic processes in hybridoma cells are incorporated by dividing the cell mass into four intracellular metabolic pools. The model framework and structure allow the dynamic calculation of the instantaneous specific growth rate of a hybridoma culture. The steady state and dynamic simulations of the model equations exhibit excellent agreement with experimentally observed trends in substrate utilization and product formation. The model represents the first to include any degree of metabolic detail and structure in describing a hybridoma culture. In so doing, it provides the basic modeling framework for incorporating further details of metabolism and can be a useful tool to study various strategies for enhancing hybridoma growth as well as viability and the production of monoclonal antibodies in suspension cultures.  相似文献   

6.
Bioactive substances (BAS) of plant origin are known to play a very important role in modern medicine. Their use, however, is often limited by availability of plant resources and may jeopardize rare species of medicinal plants. Plant cell cultures can serve as a renewable source of valuable secondary metabolites. To the date, however, only few examples of their commercial use are known. The main reasons for such a situation are the insufficient production of secondary metabolites and high cultivation costs. It is possible to increase the performance of plant cell cultures by one or two orders of magnitude using traditional methods, such as selection of highly productive strains, optimization of the medium composition, elicitation, and addition of precursors of secondary metabolite biosynthesis. The progress in molecular biology methods brought about the advent of new means for increasing of the productivity of cell cultures based on the methods of metabolic engineering. Thus, overexpression of genes encoding the enzymes involved in the synthesis of the target product or, by contrast, repression of these genes significantly influences the cell biosynthetic capacity in vitro. Nevertheless, the attempts of the production of many secondary metabolites in plant cell culture were unsuccessful so far, probably due to the peculiarities of the cell culture as an artificial population of plant somatic cells. The use of plant organ culture or transformed roots (hairy root) could turn to be a considerably more efficient solution for this problem. The production of plant-derived secondary metabolites in yeast or bacteria transformed with plant genes is being studied currently. Although the attempts to use metabolic engineering methods were not particularly successful so far, new insights in biochemistry and physiology of secondary metabolism, particularly in regulation and compartmentation of secondary metabolite synthesis as well as mechanisms of their transport and storage make these approaches promising.  相似文献   

7.
The effects of pulsed electric field (PEF) on growth and secondary metabolite production by plant cell culture were investigated by using suspension cultures of Taxus chinensis as a model system. Cultured cells in different growth phases were exposed to a PEF (50 Hz, 10 V/m) for various periods of time. A significant increase in intracellular accumulation of taxuyunnanine C (Tc), a bioactive secondary metabolite, was observed by exposing the cells in the early exponential growth phase to a 30-min PEF. The Tc content (i.e., the specific production based on dry cell weight) was increased by 30% after exposure to PEF, without loss of biomass, compared with the control. The combination of PEF treatment and sucrose feeding proved useful for improving secondary metabolite formation. Production levels of reactive oxygen species, extracellular Tc, and phenolics were all increased, whereas cell capacitance was decreased with PEF treatment. The results show that PEF induced a defense response of plant cells and may have altered the cell/membrane's dielectric properties. PEF, an external stimulus or stress, is proposed as a promising new abiotic elicitor for stimulating secondary metabolite biosynthesis in plant cell cultures.  相似文献   

8.
Summary More efficient bioreactors for the production and recovery of secondary metabolites from plant cell cultures are needed. Three factors that have the potential to increase productivity are adsorption in situ, elicitors, and cell immobilization. The effects of these factors on ajmalicine production from Catharanthus roseus are reported in this paper. Elicitation using autoclaved cultures of the mold, Phytophthora cactorum, stimulates a 60% increase in ajmalicine production. The response time to elicitor addition was under 11 h. Adsorption of ajmalicine from the extracellular medium with the neutral resin, Amberlite XAD-7, greatly enhanced the release of ajmalicine (less than 10% extracellular to 40%) with a 40% increase in total productivity. Immobilization in Caalginate beads resulted in a significant increase in the accumulation of ajmalicine in the medium. The effects of elicitation, adsorption and immobilization were synergistic. For a 23-day culture period the amount of ajmalicine in the medium for cells subjected to all three treatments was 90 mg/L compared to 2 mg/L for suspension cultures cultured under otherwise identical conditions. These results suggest that immobilized cell bioreactors may be feasible for continuous production of products normally stored intracellularly in vacuoles in plant cells.  相似文献   

9.
To meet increasing needs of adenovirus vectors for gene therapy programs, development of efficient and reproducible production processes is required. Perfusion cultures were employed to allow infection at greater cell concentrations. In an effort to define culture conditions resulting in enhanced productivities, experiments performed at different feed rates and infected at various cell densities were compared using metabolic flux analysis. The highest specific product yields were achieved in experiments performed at high perfusion rates and/or low cell concentrations. The intracellular flux analysis revealed that these experiments exhibited greater glycolytic fluxes, slightly higher TCA fluxes, and greater ATP production rates at the time of infection. In contrast, cultures infected at high cell density and/or low medium renewal rates were characterized by a more efficient utilization of glucose at the time of infection, but the specific product yields achieved were lower. The intracellular flux analysis provided a rational basis for the implementation of a feeding strategy that allowed successful infection at a density of 5x10(6)cells/ml.  相似文献   

10.
CHO cell culture high productivity relies on optimized culture medium management under fed-batch or perfused chemostat strategies enabling high cell densities. In this work, a dynamic metabolic model for CHO cells was further developed, calibrated and challenged using datasets obtained under four different culture conditions, including two batch and two fed-batch cultures comparing two different culture media. The recombinant CHO-DXB11 cell line producing the EG2-hFc monoclonal antibody was studied. Quantification of extracellular substrates and metabolites concentration, viable cell density, monoclonal antibody concentration and intracellular concentration of metabolite intermediates of glycolysis, pentose-phosphate and TCA cycle, as well as of energetic nucleotides, were obtained for model calibration. Results suggest that a single model structure with a single set of kinetic parameter values is efficient at simulating viable cell behavior in all cases under study, estimating the time course of measured and non-measured intracellular and extracellular metabolites. Model simulations also allowed performing dynamic metabolic flux analysis, showing that the culture media and the fed-batch strategies tested had little impact on flux distribution. This work thus paves the way to an in silico platform allowing to assess the performance of different culture media and fed-batch strategies.  相似文献   

11.
Fat-storing cells (perisinusoidal lipocytes, Ito cells), the principal proteoglycan-producing cell type in liver, were maintained for various times in primary and secondary culture to monitor the amount and pattern of [35S]sulfate-labeled glycosaminoglycans (GAG) in the cells, on the cell surface, and in the medium. In parallel with the phenotypic modulation of fat-storing cells toward myofibroblast-like cells, intracellular GAG decrease progressively, whereas cell surface-bound and medium GAG increase several-fold. These changes are associated with time-dependent alterations of the pattern of GAG in the various compartments. Dermatan sulfate is the most prominent intracellular GAG type in primary cultures, but on the cell surface and in the medium chondroitin sulfate prevails and reaches almost 70% of all medium GAG in secondary cultures. The results point to a highly dynamic expression of the specific types of GAG in the cellular and extracellular compartments of fat-storing cell cultures that seems to accompany the spontaneous transformation into myofibroblast-like cells. The latter one is a mainly chondroitin sulfate-producing cell type, whereas the initial fat-storing cell generates predominantly dermatan sulfate.  相似文献   

12.
A structured kinetic model was proposed to describe cell growth and synthesis of a secondary metabolite, berberine, in batch suspension culture ofThalictrum rugosum. The model was developed by representing the physiological state of the cell in terms of the activity and the viability, which can be estimated using the culture fluorescence measurement. In the proposed model, the cells were divided into three types; active-viable, nonactive-viable, and dead cells. The model was formulated in terms of cell growth (dry/fresh weight, activity, and viability), carbon source utilization (sucrose, glucose and fructose), and product formation (intracellular and extracellular berberine). The concept of cell expansion and the death phase were also included in this model to describe the sugar accumulation and the release of intracellular berberine into medium by cell lysis, respectively. The parameters used in this model were estimated based on the experimental results in conjunction with numerical optimization techniques. Satisfactory agreement between the model and experimental data was obtained. The proposed model could accurately predict cell growth and product synthesis as well as the distribution of the secondary metabolite between the cell and the medium. It is suggested that the proposed model could be extended as a useful framework for quantitative analysis of physiological characteristics in the other plant cell culture systems.  相似文献   

13.
This work aims to detect the two signal events in the elicitation of plant defense responses and secondary metabolism in plant cell cultures by low-energy ultrasound (US), transient production of reactive oxygen species (ROS) or the oxidative burst and jasmonic acid (JA) biosynthesis, and examine their influence on secondary metabolism. Experiments were carried out in Taxus chinensis cell suspension culture which produces the anticancer diterpenoid Taxol (paclitaxel). The culture was exposed to low-frequency US for a short period of time (2 min). At sufficiently high US power levels the US exposure significantly enhanced the Taxol production and slightly depressed cell growth and viability. The US exposure induced transient production of O(2)*- and H(2)O(2) and an increase in the intracellular JA level as well as the activities of enzymes for JA synthesis, lipoxygenase (LOX), and allene oxide synthase (AOS). Inhibition of the ROS production by putative ROS scavengers or the JA accumulation by LOX inhibitors effectively suppressed the US-stimulated Taxol production. Inhibition of the ROS production also suppressed the US-induced JA accumulation. These results suggest that oxidative burst is an upstream event to JA accumulation, and both ROS from the oxidative burst and JA from the LOX pathway are key signal elements in the elicitation of Taxol production of T. chinensis cells by low-energy US.  相似文献   

14.
15.
Plant cell biofactories offer great advantages for the production of plant compounds of interest, although certain limitations still need to be overcome before their maximum potential is reached. One obstacle is the gradual loss of secondary metabolite production during in vitro culture maintenance, which is an important impediment in the development of large‐scale production systems. The relationship between in vitro maintenance and epigenetic changes has been demonstrated in several plant species; in particular, methylation levels have been found to increase in in vitro cultures over time. Higher DNA methylation levels have been correlated with a low yield of secondary metabolites in in vitro plant cell cultures. The longer the period of subculturing, the more methylated cytosines were found throughout the genome, and secondary metabolism decreased significantly. This review summarizes different studies on epigenetic changes during the maintenance of in vitro cell cultures and the insights they provide on the mechanisms involved. It concludes by looking at the perspectives for new approaches designed to avoid declines in metabolite production.  相似文献   

16.
Production and engineering of terpenoids in plant cell culture   总被引:1,自引:0,他引:1  
Terpenoids are a diverse class of natural products that have many functions in the plant kingdom and in human health and nutrition. Their chemical diversity has led to the discovery of over 40,000 different structures, with several classes serving as important pharmaceutical agents, including the anticancer agents paclitaxel (Taxol) and terpenoid-derived indole alkaloids. Many terpenoid compounds are found in low yield from natural sources, so plant cell cultures have been investigated as an alternate production strategy. Metabolic engineering of whole plants and plant cell cultures is an effective tool to both increase terpenoid yield and alter terpenoid distribution for desired properties such as enhanced flavor, fragrance or color. Recent advances in defining terpenoid metabolic pathways, particularly in secondary metabolism, enhanced knowledge concerning regulation of terpenoid accumulation, and application of emerging plant systems biology approaches, have enabled metabolic engineering of terpenoid production. This paper reviews the current state of knowledge of terpenoid metabolism, with a special focus on production of important pharmaceutically active secondary metabolic terpenoids in plant cell cultures. Strategies for defining pathways and uncovering rate-influencing steps in global metabolism, and applying this information for successful terpenoid metabolic engineering, are emphasized.  相似文献   

17.
By modification of a standard Murashige and Skoog plant tissue culture maintenance medium, a system has been developed for Catharanthus roseus cell suspension cultures in which both growth and indole alkaloid accumulation can occur in a single-stage culture of 14–21 days. Precise optimization of the medium depends upon the cell line under investigation, but the inclusion of lactose as the carbohydrate source, and NAA and kinetin as growth regulators, will generally increase yields of the indole alkaloid catharanthine. Treatment of cells growing in this optimized medium with agents that stimulate the accumulation of secondary metabolites both increases the yield of catharanthine and reduces the time required for production. We believe that this process could be useful for the commercial production of plant secondary metabolites.  相似文献   

18.
Plant cell culture production of recombinant products offers a number of advantages over traditional eukaryotic expression systems, particularly if the product can be targeted to and purified from the cell culture broth. However, one of the main obstacles is product degradation by proteases that are produced during cell culture, and/or the loss of biological activity of secreted (extracellular) products as a result of alteration in the protein conformation. Because proteolysis activity and target protein stability can be significantly influenced by culture conditions, it is important to evaluate bioprocess conditions that minimize these effects. In this study, a bioreactor strategy using a protocol involving pH adjustment and medium exchange during plant cell culture is proposed for improving the production of functional recombinant alpha(1)-antitrypsin (rAAT), a human blood protein, produced using several alternative expression systems, including a Cauliflower mosaic virus (CaMV) 35S constitutive promoter expression system, a chemically inducible, estrogen receptor-based promoter (XVE) expression system, and a novel Cucumber mosaic virus (CMV) inducible viral amplicon (CMViva) expression system developed by our group. We have demonstrated that higher medium pH help reduce protease activity derived from cell cultures and improve the inherent stability of human AAT protein as well. This strategy resulted in a fourfold increase in the productivity of extracellular functional rAAT (100 microg/L) and a twofold increase in the ratio of functional rAAT to total rAAT (48%) in transgenic N. benthamiana cell cultures using a chemically inducible viral amplicon expression system.  相似文献   

19.
Stationary phase cell suspension cultures of Agrobacterium tumefaciens transformed Lithospermum erythrorhizon respond to additions of sucrose-rich (C-rich) medium with a 2-3-fold increase in the accumulation of shikonin derivatives and a 3-3.5-fold increase in the accumulation of soluble phenolics while showing a modest (10-30%) increase in cell concentration. Conversely, the addition of nitrate-rich (N-rich) medium resulted in 25-35% increase in biomass concentration but only 2-9% increase in shikonin production and approximately 3% increase in the yield of soluble phenolics. Repeated additions of C-rich medium resulted in only a modest (less than 10%) improvement in shikonin production over the levels obtained after the first application. No obvious correlation could be discerned between intracellular ATP levels or protein synthesis patterns and the pattern of shikonin accumulation following the addition of C-rich medium, suggesting that the precursor diversion mechanism is not generally applicable in our cell line. It was found that alternating feeding of N-rich and C-rich media could be used as an effective strategy for enhancing the productivity of plant secondary metabolite. (c) 1993 John Wiley & Sons, Inc.  相似文献   

20.
Plant cell culture provides a viable alternative over whole plant cultivation for the production of secondary metabolites. In order to successfully cultivate the plant cells at large scale, several engineering parameters such as, cell aggregation, mixing, aeration, and shear sensitivity are taken into account for selection of a suitable bioreactor. The media ingredients, their concentrations and the environmental factors are optimized for maximal synthesis of a desired metabolite. Increased productivity in a bioreactor can be achieved by selection of a proper cultivation strategy (batch, fed-batch, two-stageetc.), feeding of metabolic precursors and extraction of intracellular metabolites. Proper understanding and rigorous analysis of these parameters would pave the way towards the successful commercialization of plant cell bioprocesses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号