首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of deuterium (D) on Chlorella ellipsoidea C-27 wereinvestigated. Cells grown in a medium prepared with deuteriumoxide (D2O) showed pronounced delays in cell growth and division;the length of a cell cycle in medium with 100 mol% D2O was morethan 5 times longer than that in medium prepared in H2O Thedelay caused by D2O was not overcome by either indoleaceticacid or kinetin. The biological and ultrastractural characteristicsof deuterated .Chlorella (D-Chlorella) cells were examined.The responses of D-Chlorella to cell wall-digesting enzymesdid not differ from those of normal (H-Chlorella) cells. D-Chlorellacells were enlarged, and cellular components, such as proteins,nucleic acids, lipids and ATP, were present in larger quantitiesthan those in H-cells. The chloroplast of D-Chlorella was enlarged,but the levels of component photosynthetic pigments were significantlyreduced. By contrast, mitochondria of D-Chlorella were smallerthan those of H-cells. These changes in levels of cellular componentsand in the sizes of organelles seem to be unique to deuteration. (Received May 13, 1992; Accepted July 28, 1992)  相似文献   

2.
Time courses of photosynthetic 14CO2 fixation and its simulationare presented for Chlorella cells grown under low CO2 concentration(low-CO2 cells) and subsequently exposed to 0.2 mM NaH14CO3or 130 ppm 14CO2 in the presence or absence of carbonic anhydrase(CA) in the suspending medium. It was shown that Chlorella cells utilized only free CO2 whenNaHCO3 was given in the presence or absence of CA, or when CO2was bubbled in the absence of CA. However, the present simulationindicated that both CO3 and HCO3 were utilized when CO2was given in the presence of CA. Based on these results, weconcluded that 1) Chlorella cells absorb only free CO2 and 2)this gas is provided to algal cells in two ways, i.e., by directand indirect CO2 supply. Usually, the dissolved CO2 is directlyutilized by the algal cells (direct supply of CO2). However,when the concentration of dissolved CO2 is extremely low andwhen there is CA, CO2 reconverted from HCO3 is also utilizedby Chlorella cells (indirect supply of CO2). The utilizationof HCO3 indicated by the above simulation was explainedby the indirect supply of CO2. We further assumed that the indirectsupply of CO2 to ribulose 1,5-bisphosphate carboxylase occursmainly in the chloroplasts of low-CO2 cells containing highCA. Thus, under low CO2 concentrations, low-CO2 cells can carryout more efficient CO2 fixation than high-CO2 cells, resultingin the lower apparent Km(CO2). 3Department of Biology, Faculty of Science, Niigata University,Niigata, Japan. (Received April 2, 1980; )  相似文献   

3.
The gaseous composition is an important factor affecting the performance of plant cell cultures. Gaseous metabolites, especially O2, CO2 and C2H4, play important roles in cell physiology. Forced aeration in bioreactors usually results in poor cell growth and secondary metabolite production. In this work, the effects of gaseous metabolites on cell growth, secondary metabolite formation as well as PPO activity were investigated with respect to Stizolobium hassjoo cell culture producing l-DOPA (3,4-dihydroxyphenylalanine). A device allowing the control of the partial pressures of gaseous metabolites in shake flasks was designed. In addition, a recirculating gas system with a PO2 controller was designed for a bioreactor. This device could maintain constant PO2 and PCO2 in the bioreactor headspace. The results showed that the highest l-DOPA content was attained at PO2=0.30 atm. Higher PO2 values retarded cell growth and increased the pH of the culture broth. High PO2 also enhanced the formation of ethylene and inhibited l-DOPA formation. Carbon dioxide concentrations lower than 5% enhanced cell growth and l-DOPA formation. Cell growth was retarded by 0.3 ppm of ethylene in 2~5 carbon dioxide. Oxygen concentration and D.O. in the broth could be controlled at constant levels in the recirculating culture system. Enrichment of PO2 up to 0.3 atm during the later stage of cultivation facilitated l-DOPA formation. The interaction among the gaseous metabolites and their influences on cell metabolism and l-DOPA formation were elucidated. This information will facilitate the rational operation of plant cell culture systems producing secondary metabolites.  相似文献   

4.
The rate of photosynthetic 14CO2 fixation in Chlorella vulgaris11h cells in the presence of 0.55 mM NaH14CO3 at pH 8.0 (20?C)was greatly enhanced by the addition of carbonic anhydrase (CA).However, when air containing 400 ppm 14CO2 was bubbled throughthe algal suspension, the rate of 14CO2 fixation immediatelyafter the start of the bubbling was suppressed by CA. Theseeffects of CA were observed in cells which had been grown inair containing 2% CO2 (high-CO2 cells) as well as those grownin ordinary air (containing 0.04% CO2, low-CO2 cells). We thereforeconcluded that, irrespective of the CO2 concentration givento the algal cells during growth, the active species of inorganiccarbon absorbed by Chlorella cells is free CO2 and they cannotutilize bicarbonate. The effects observed in the high-CO2 cellswere much more pronounced than those in the high-CO2 cells.This difference was accounted for by the difference in the affinityfor CO2 in photosynthesis between the high- and low-CO2 cells. (Received May 19, 1978; )  相似文献   

5.
Regulation of transport of dissolved inorganic carbon (DIC)in response to CO2 concentration in the external medium hasbeen compared in two closely-related green algae, Chlorellaellipsoidea and Chlorella saccharophila. C. ellipsoidea, whengrown in high CO2, had reduced activities of both CO2 and transport and DIC transport activitieswere increased after the cells had acclimated to air. However,high CO2-grown C. saccharophila had a comparable level of photosyntheticaffinity for DIC to that of air-grown C. ellipsoidea and thiswas accompanied by a capacity to accumulate high internal concentrationsof DIC. The high photosynthetic affinity and the high intracellularDIC accumulation did not change in cells grown in air exceptthat the occurrence of external carbonic anhydrase (CA) in air-grownC. saccharophila stimulated the intracellular DIC accumulationin the absence of added CA. These data indicate that activeDIC transport is constitutively expressed in C. saccharophila,presumably because this alga is insensitive to the repressiveeffect of high CO2 on DIC transport. This strongly supportsthe existence of a direct sensing mechanism for external CO2in Chlorella species, but also indicates that external CA isregulated independently of DIC transport in Chlorella species. Key words: Carbonic anhydrase, Chlorella, CO2-insensitive, DIC transport, wild type  相似文献   

6.
When Chlorella vulgaris llh cells which had been grown in airenriched with 2–4% CO2 (high-CO2 cells) were bubbled withair containing ca. 400 ppm CO2, illumination at an intensityas low as the light compensation point (350 lux) was sufficientto increase the photosynthetic rate under limiting CO2 concentrations.The same treatment induced carbonic anhydrase (CA) activity.The induction of CA activity and increase in photosyntheticrate at limiting CO2 concentrations were observed in the presenceof 10 µM DCMU which completely inhibits photosynthesis.These results indicate that photosynthetic electron transportis not involved in CA induction in Chlorella vulgaris llh cells.The parallelism between the changes in CA activity and the rateof photosynthesis under limiting CO2 concentrations agree withthe previous conclusion that the transport of CO2 from outsideto the site of CO2 fixation is facilitated by CA and hence lowersthe apparent Km(CO2) for photosynthesis. (Received December 24, 1982; Accepted May 10, 1983)  相似文献   

7.
For the elucidation of the isotope effect on cell functionsof deuterium (D) incorporated into cell constituents, alterationsin the heat response of D-exchanged Chlorella ellipsoidea (D-Chlorella)were investigated. D-Chlorella cells obtained by culture inmedium that contained 60 mol% D2O were assayed for their responseto heat in H2O medium to rule out the solvent isotope effectof D2O. Upon heating at 41–45?C, the heat sensitivityof D-Chlorella was greater than that of ordinary (H-Chlorella)cells; at 43?C, the heat sensitivity of D-Chlorella was 1.5–1.6times higher than that of H-Chlorella. For the induction ofresistance to heating, preheating of the cells at a lower temperaturethan that used for heat treatment was effective in the caseof both D- and H-Chlorella. However, the optimum temperaturefor preheating of D-Chlorella (34?C) was lower than for H-Chlorella(36–37?C). With preheating at 34?C, heat-shock proteins(HSPs), in particular proteins of 62 and 79 kDa, were inducedsimilarly in both types of cell. However, the gel-electrophoreticpatterns of HSPs induced at 37?C were differed somewhat betweenD- and H-Chlorella. These results suggest that the responseof cells to heat, in particular the induction of resistanceto heating and the synthesis of HSPs, was altered by deuterationof cell constituents. (Received June 11, 1990; Accepted November 24, 1990)  相似文献   

8.
Ammonia Induces Starch Degradation in Chlorella Cells   总被引:3,自引:0,他引:3  
When ammonia was added to cells of Chlorella which had fixed14CO2 photo synthetically, 14C which had been incorporated intostarch was greatly decreased. A similar effect was observedwhen potassium nitrate and sodium nitrite were added. The ammonia-induceddecrease in 14C-starch was observed in all species of Chlorellatested. With cells of C. vulgaris 11h, most of the radioactivityin starch was recovered in sucrose, indicating that ammoniainduces the conversion of starch into sucrose. The percent of14C recovered in sucrose differed from species to species andpractically no recovery in sucrose was observed in C. pyrenoidosa.In most species tested, the enhancing effects of blue lightand ammonia on O2 uptake as well as the ammonia effect on starchdegradation were greater in cells which had been starved inphosphate medium in the dark than in non-starved cells. In contrast,the enhancing effect of ammonia on dark CO2 fixation was muchgreater in non-starved cells. C. pyrenoidosa was unique in thatblue light did not show any effect on its O2 uptake. (Received August 15, 1984; Accepted November 16, 1984)  相似文献   

9.
Inorganic carbon transport during photosynthesis of cyanobacteriumAnabaena variabilis grown under ordinary air was investigatedby supplying 14CO2 or H14CO3 solution to three differentstrains. Both CO2 and HCO3 were accumulated within thealgal cells. In the cell suspension from which dissolved inorganiccarbon had been depleted by pre-illumination, CO2 was transportedand accumulated faster than HCO3. When the concentrationof HCO3 injected into the cell suspension of A. variabilisM3 was 25 times as high as that of CO2 (the expected ratio atequilibrium at pH 7.8), the initial rates of fixation of bothinorganic carbon species were practically the same. On the otherhand, when 14CO2 or H14CO3 was added under steady statephotosynthetic conditions, both carbon species were transportedat similar rates. The ratio of fixed to transported carbon measuredafter the initial 5 s was only 23–27% regardless of thecarbon species supplied. This percentage is much lower thanthat reported for Chlorella cells. 1 To whom reprint requests should be addressed (Received June 30, 1986; Accepted December 16, 1986)  相似文献   

10.
A range of sugars, sugar alcohols, sugar phosphates, organicacids, and monohydric alcohols have been tested as carbon sourcesfor growth and as respiratory substrates using Chlorella vulgaris,Brannon I, grown in darkness. Much higher rates of growth and respiration were obtained withd-glucose than with any other substance tested. Ethanol (at0·005 M.) sustained both growth and respiration at c.50 per cent, of the level with glucose (0·028 M. or higher).Evidence was obtained that the organism can become ‘adapted’to utilize d-galactose and sucrose as effective carbon sources.Sustained growth was not obtained with any of the other substancestested. The glucose monophosphates, methanol and certain organic acids(oxalacetate, -ketoglutarate, cis-aconitate, and pyruvate) clearlystimulated oxygen uptake but to a less extent than ethanol.The other substances tested were either inhibitory to respirationor inactive or of very low activity as substrates. The growth in darkness and in liquid culture of Chlorella whensupplied with d-glucose was insensitive to pH over the range4·5 to 7·0 and was markedly enhanced by a highlevel of aeration. Gains in cellular dry weight ranging from45 to 90 per cent, of the weight of d-glucose disappearing fromthe culture medium were recorded in growth experiments; measurementsof CO2 evolution in the Warburg indicated retention of up totwo-thirds of the glucose-C in cell material.  相似文献   

11.
Different types of ventilation of the culture vessel headspace,each with and without the ethylene inhibitor AgNO3(3.0 µM)or the ethylene precursor 1-aminocyclopropane-1-carboxylic acid(ACC) (2.0 µM) in the culture medium, were investigatedin terms of their effects on the growth of potato cuttings (Solanumtuberosum L. ‘cara’). Concentrations of CO2 , O2andethylene in the culture vessel headspaces were monitored duringthe study. Growth was substantially enhanced and vitrification(stunting and epinasty of leaves and hooking of stem apices)was reduced by increasing the efficiency of ventilation, theeffects being greatest with forced ventilation. In the conventionaldiffusive treatment (via a polypropylene membrane), leaf epinastyoccurred but the leaves were not stunted unless ACC had beenadded. AgNO3prevented vitrification in the latter case and reducedit in the sealed treatment. On the other hand, with all forcedventilation treatments, even with the addition of ACC, the plantletsgrew well and some of the growth parameters exceeded those inthe diffusive + AgNO3treatment. Ethylene removal was clearlyan important factor contributing to the better growth foundwith diffusive and especially with the forced ventilation treatment;with the latter, ethylene concentrations in the culture vesselswere virtually zero. In addition, enhanced CO2supply probablycontributed to the better performance under forced ventilationcompared to diffusive ventilation. Callus developed on the stembases in all sealed (airtight) and diffusive treatments exceptwhere AgNO3was used. No callus was observed in any treatmentwhere forced ventilation was applied and in vitro tuberization(tuber size) was considerably improved by this treatment. Copyright2001 Annals of Botany Company Callus, ethylene, potato, tuberization, vitrification  相似文献   

12.
Etiolated Avena sativa L. coleoptile sections were used to determinethe influence of C2H4 on in vivo and in vitro rates of CO2 fixation,and to measure the influence of various permutations of C2H4,CO2, and malate on growth. Whereas 1 mM malate or 320 µI-1 CO2 stimulated growth by approximately 100 per cent, inhibitionof growth by 10-8 µ I-1 C2H4 was substantial only in thepresence of malate or CO2 The increase in growth rate in responseto these two agents was eliminated by the simultaneous applicationof C2H4. The in vivo rate of dark [14C]bicarbonate fixationand in vitro enzymic assays of fixation were not measurablyinhibited by C2H4. These results are discussed in the lightof evidence which indicates that CO2-stimulated growth is mediatedby dark fixation. The data do not support the view that C2H4inhibition of growth results from an inhibition of fixation,but suggests that C2H4 may inhibit some step in the processby which malate stimulates growth.  相似文献   

13.
Gametophyte-derived callus cultures of Platycerium coronariumcould be maintained under photoautotrophic conditions on Murashigeand Skoog medium supplemented with 2µM 2,4-dichlorophenoxyaceticacid (2,4-D) and with CO2 enrichment. Progressive reductionof sucrose from the medium resulted in a reduction in growth,but an increase in total chlorophyll content. When subculturingwas delayed beyond 2 weeks, callus cells differentiated intogametophytes on the medium with 0.2 sucrose and no CO2 enrichment.Enriching the photoautotrophic cultures on 2µM 2, 4-Dwith 1% CO2 resulted in about 1.7-fold increase in fresh weightwithin 42 d. Total chlorophyll content was generally higherwith 1% CO2 enrichment than with 10%. Fv/Fm ratio was higherfor callus on low levels of sucrose (>0.5%) than that onsucrose 1.0%. An increase in autofluorescence of chloroplasts,but not the size, was observed with decreasing sucrose levelsin the medium. Autofluorescence decreased with increase in CO2from 0.03%. Our data are in agreement with the view that long-termexposure to high levels of decrease in photosynthetic capacity. Key words: Platycerium coronarium, stag's horn fern, autofluorescence of chloroplasts, confocal laser scanning microscope, Fv/Fm ratio, photoautotrophic callus  相似文献   

14.
The inhibition of hexose uptake by bicarbonate ions was investigatedin detail in order to test the specificity and reversibilityof the effect and to compare it with those of other electrolytes.The degree of inhibition was similar at pH 7.0 and pH 8.0. AtpH 4.5 no influence of a high concentration of CO2 on 3-O-methylglucoseuptake was found. Therefore, the inhibition of hexose uptakeby bicarbonate cannot be explained by consequences of CO2 influx.The inhibition of sugar absorption by calcium and potassiumions was similar to that exerted by bicarbonate in so far asit was observed at higher pH only. The inhibition exerted bysodium salts of different monovalent weak acids was limitedto lower pH and needed some time to become established or reversed.The bicarbonate effect was independent of time and reversiblewithout a lag phase. Sodium salts of strong mineral monovalentacids did not differ significantly in their effect on sugaruptake. Bicarbonate inhibited phosphate uptake in a similarmanner to hexose uptake but strongly stimulated the absorptionof potassium. The bicarbonate effect is assumed to result froma change in the degree of coupling of secondary active transportto the proton pump. Key words: Inhibition, Transport coupling, pH, Proton pump  相似文献   

15.
For investigating the effect of slight modification of proteinson their higher-ordered structure, and that of chaperonin onthe functional assembly of proteins, we prepared partially deuteratedribulose 1,5-bisphosphate carboxylase (Rubisco) by cultivatingChlorella ellipsoidea in 100 mol% D2O medium. Chlorella cellsgrown in the D2O medium (D-Chlorella) contained almost the sameamount of Rubisco (D-Rubisco) as the cells grown in H2O medium(H-Chlorella) determined by Western blotting using Rubisco-specificantibody, whereas the activity of D-Rubisco determined by carbonfixation was only 28% of that of Rubisco from H-Chlorella (H-Rubisco).D-Rubisco, however, showed similar Km and pH and temperatureoptima to those of H-Rubisco as well as similar antibody bindingcapability. The enzyme activity of D-Rubisco was recovered to84% of that of H-Rubisco by the addition of GroE proteins (GroEL,chaperonin 60, and GroES, chaperonin 10), members of the chaperoninfamily produced by Escherichia coli. These data suggest thatD-Rubisco has subtle incompleteness in terms of functional assembly,a situation that is correctable by chaperonin. (Received August 8, 1994; Accepted January 9, 1995)  相似文献   

16.
Rooted cuttings of Kalanchoë blossfeldiana cv. Feuer Bluteand K. crenatum failed to show a net dark CO2 fixation whenraised in dilute nutrient solution. Dark CO2 fixation (CAM)in these plants was initiated either by increasing the soluteconcentration or lowering the water potential of the nutrientsolution by addition of mannitol (0.11 M and 0.25 M) and carbowax4000 (0.16 M and 0.3 M). Initiation was also brought about byspraying the leaves with B-9 (N,dimethylamino-succinamicacid,300mg1–1) or by addition of CCC (2 chloroethyl trimethylammonium chloride, 300 or 750 mg1–1) to the nutrient medium.Failure of CAM in dilute solution was suggested to be due tolack of accumulation of photosynthates in the leaves. Waterstress and growth retardants brought about reduction of monilizationand/or translocation thereby leading to accumulation of assimilatesin the leaves and to initiation of dark CO2 fixation.  相似文献   

17.
When Chlorella vulgaris 11h, Chlorella vulgaris C-l, Chlamydomonasreinhardtii, Chlamydomonas moewusii, Scenedesmus obliquus, orDunaliella tertiolecta were illuminated in with 0.5 mM NaHCO3,the pH of the medium increased in a few minutes from 6 to about9 or 10. The alkalization, which was accompanied by O2 evolution,was dependent on light, external dissolved inorganic carbon(DIC) as HCO-3, and algae grown or adapted to a low, air-levelCO2 in order to develop a DIC concentrating mechanism. Therewas little pH increase by algae without a DIC concentratingprocess from growth on 3% CO2 in air. Photosynthetic O2 evolutionwithout alkalization occurred using either internal DIC or externalCO2 at acidic pH. The PH increase stopped between pH 9 to 10,but the alkalization would restart upon re-acidification betweenpH 6 and 8. Alkalization was suppressed by the carbonic anhydraseinhibitors, acetazolamide, ethoxyzolamide or carbon oxysulfide.The pH increase appeared to be the consequence of the externalconversion of HCO3 into CO2 plus OH during photosynthesisby cells with a high affinity for CO2 uptake. Cells grown onhigh CO2 to suppress the DIC pump, when given low levels ofHCO3 in the light, acidified the medium from pH 10 to7. Air adapted Scenedesmus cells with a HCO3 pump, aswell as a CO2 pump, alkalized the medium very rapidly in thelight to a pH of over 10, as well as slower in the dark or inthe light with DCMU or without external DIC and O2 evolution.Alkalization of the medium during photosynthetic DIC uptakeby algae has been considered to be part of the global carboncycle for converting H2CO3 to HCO3 and for the formationof carbonate salts by calcareous algae from the alkaline conversionof bicarbonate to carbonate. These processes seem to be a consequenceof the algal CO2 concentrating process. 1Present address: Department of Biology, Faculty of Science,Niigata University, Niigata, 950-21 Japan.  相似文献   

18.
The photosystem stoichiometry in Dunaliella salina thylakoidswas measured during cell growth in a fully contained culture.In dilute cultures, obtained after inoculation of cells intofresh growth medium, the PS II/PS I stoichiometry was about2.2/1.0. This ratio was gradually lowered to about 1.2/1.0 inmature cultures. The decrease of the PS II/PS I ratio is discussedin terms of increasing self-shading in the culture and increasingpH in the growth medium. Changes in the pH occurred from 7.7in young cultures to 8.9 in mature ones and caused a significantdepletion of soluble CO2 from the growth medium. A correlationof the CO2/HCO3 ratio in the growth medium with the PSII/PS I ratio in the thylakoid membrane is presented. 1 Permanent address: Department of Physics, Palacky University,tr. Svobody 26, 771 46 Olomouc, Czechoslovakia (Received September 12, 1990; Accepted April 4, 1991)  相似文献   

19.
Individuals ofArabidopsis thaliana, collected in different naturalpopulations, were grown in controlled and elevated CO2in a glasshouse.Following germination, root growth of progeny of different linesof these populations was studied in control and elevated atmosphericCO2. No significant direct effect of atmospheric CO2concentrationcould be demonstrated on root growth. An important parentaleffect was apparent, namely that root length and branching weredecreased in seeds collected from a mother plant which had beengrown in elevated CO2. This was correlated with smaller seeds,containing less nitrogen. These parental effects were geneticallyvariable. We conclude that CO2may affect plant fitness via parentaleffects on seed size and early root growth and that the geneticvariability shown in our study demonstrates thatArabidopsispopulationswill evolve in the face of this new selective pressure.Copyright1998 Annals of Botany Company Root growth, root branching, seed, elevated CO2, natural population,Arabidopsis thaliana, parental effect.  相似文献   

20.
The photosynthetic metabolism of carbon in fully deuteratedcells of Chlorella ellipsoidea C-27 (D-Chlorella), obtainedby culture in medium prepared with 100 mol% D2O, was characterizedby examining the activities of several enzymes and the levelsof metabolic regulators in a comparison with those of ordinarycells (H-Chlorella). The cellular content of starch in D-Chlorellawas more than twice that in H-Chlorella, whereas those of sucroseand glucose were significantly lower in D-Chlorella. Deuterationof Chlorella caused marked alterations in the activities ofenzymes involved in starch metabolism. There was a significantdecrease in the activity of phosphorylase, a catabolic enzyme,and a significant increase in the activity of starch synthase,an anabolic enzyme. These alterations are probably responsiblefor the increase in the amount of starch in cells. By contrast,no marked changes were observed in the activities of enzymesand the levels of metabolic inhibitors that are involved inthe synthesis of sucrose. It seems likely, therefore, that thedecrease in the amount of sucrose in D-Chlorella was causedmainly by a deficiency in sources of carbon in the cytoplasm,as a consequence of an increase in levels of starch in chloroplasts. (Received May 13, 1992; Accepted December 1, 1992)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号