首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Voltage-Clamp Studies on Uterine Smooth Muscle   总被引:6,自引:1,他引:6       下载免费PDF全文
These studies have developed and tested an experimental approach to the study of membrane ionic conductance mechanisms in strips of uterine smooth muscle. The experimental and theoretical basis for applying the double sucrose-gap technique is described along with the limitations of this system. Nonpropagating membrane action potentials were produced in response to depolarizing current pulses under current-clamp conditions. The stepwise change of membrane potential under voltage-clamp conditions resulted in a family of ionic currents with voltage- and time-dependent characteristics. In sodium-free solution the peak transient current decreased and its equilibrium potential shifted along the voltage axis toward a more negative internal potential. These studies indicate a sodium-dependent, regenerative excitation mechanism.  相似文献   

2.
We sought to elucidate the effects of different concentrations of dietary selenium on calcium ion release, MLCK levels, and muscle contraction in the uterine smooth muscle of rats. The selenium (Se) content of blood and of uterine smooth muscle tissues was detected by fluorescence spectrophotometry. Ca2+ content was measured by atomic absorption spectroscopy. Calmodulin (CaM) and MLCK RNA and protein levels were analyzed by quantitative real-time polymerase chain reaction and Western blot, respectively. Dietary Se intake increased the Se levels in the blood and in uterine smooth muscle tissues and increased the Ca2+ concentration in uterine smooth muscle tissues. The addition of Se also promoted CaM expression and enhanced MLCK activation in uterine smooth muscle tissues. In conclusion, Ca2+, CaM, and MLCK were regulated by Se in uterine smooth muscle; Se plays a major role in regulating smooth muscle contraction in the uterus.  相似文献   

3.
目的:探索离体子宫平滑肌测定方法中,使用增氧泵通气取代混合氧为离体子宫平滑肌供氧的可行性。方法:采用RM-6240BD多道生理信号采集处理系统,观察营养液内通入混合氧、增氧泵通气及无通气对离体子宫平滑肌活动力的影响。结果:与营养液内通入混合氧相比,离体子宫平滑肌的活动力在混合氧组与增氧泵通气组间无统计学差异(P0.05),不通气组的频率和活动力均有统计学差异(P0.05或P0.01)。结论:可以使用增氧泵通气为离体子宫平滑肌供氧,既满足了供氧,同时也可促进营养液流动,使离体子宫与营养液充分接触。  相似文献   

4.
Cyclic AMP and Calcium in Relaxation in Intestinal Smooth Muscle   总被引:3,自引:0,他引:3  
WE have studied the role of cyclic AMP in relaxation of smooth muscle and elucidated the mechanism of its action.  相似文献   

5.
Abstract

Capacitative calcium entry was studied in the A7r5 vascular smooth muscle cell line by measuring 45Ca2+ influx. Entry was induced by depletion of the Ca2+ pools by either the receptor agonist [Arg]8vasopressin (AVP) or the SR-Ca2+-ATPase inhibitor thapsigargin (TG). TG showed a higher efficacy for calcium influx than AVP. This is probably due to a larger Ca2+ release from the pools induced by TG compared to AVP and the irreversible inhibition of the SR-Ca2+-ATPase by TG causing influx to persist for a longer period of time. At maximally effective concentrations signals induced by AVP and TG were synergistic in the absence but not in the presence of the intracellular calcium chelator, 1,2-bis(2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid (BAPTA). Depolarisation with 55 mM KCl completely inhibited 45Ca2+ influx induced by TG but only slightly the one induced by AVP, both effects being less pronounced in the presence of BAPTA. [Ca2+]c signals induced by AVP and TG were both inhibited by depolarisation.

In conclusion, although our results show differences between AVP- and TG-induced Ca2+ influx, they can be explained by their different mechanism of action and are in accordance with an activation of the same capacitative entry pathway by both agents.  相似文献   

6.
Acetylcholine elicited a sustained contraction and an increase in potassium efflux in longitudinal muscle isolated from the guinea pig ileum. Stepwise increases in the calcium concentration of the bathing medium, from 0.06 to 36 mM generally reduced the increase in potassium efflux, but had a complex effect on the mechanical response. Contractions produced by high levels of acetylcholine became progressively larger or remained at a high magnitude as the calcium concentration was increased. Contractions produced by low levels of acetylcholine also improved initially, but were depressed again by the highest concentration of calcium introduced. Ethanol, in the appropriate concentration, inhibited completely the acetylcholine-induced contraction without reducing the increase in potassium efflux. Calcium reversed this effect. Both extracellular calcium and ethanol depressed the large, transient increase in muscle tone developed by fibers that were preincubated in a high calcium medium and then exposed to a calcium-free medium. These findings suggested that extracellular calcium ions react with two different sites in the membrane, a stabilizing site and a storage site. A muscle contraction is activated by calcium ions which diffuse from the storage site to the myoplasm. Calcium ions reacting with the stabilizing site impede this diffusion process. Part of the stimulatory effect of acetylcholine is derived from its capacity to counteract the action of calcium at the stabilizing site.  相似文献   

7.
Abstract

Sarafotoxin b (S6b) -induced changes in intracellular Ca[2+] concentration ([Ca 2+]i) were monitored in cultured canine tracheal smooth muscle cells (TSMCs) by a fluorescent Ca2+ indicator fura-2. S6b elicited an initial transient peak followed by a sustained elevation of [Ca2+]i. BQ-123, an endothelin (ETA) eceptor antagonist, had a high affinity to block the rise [Ca2+]i response to S6b. In the absence of external Ca2+, only an initial transient peak of [Ca2+]i was seen, the sustained elevation of [Ca2+]i could then be evoked by addition of 1.8 mM [Ca2+] Ca2+ influx was required for the changes of [Ca2+]i, since the Ca2+-channel blockers, diltiazem, verapamil, an& Nip+, decreased both the initial and sustained elevation of [Ca2+Ii in response to S6b. TSMCs pretreated with phorbol 12-myristate 13- acetate (PMA, 1 (M) for 30 min attenuated Ca2+ mobilization induced by S6b, w ich was reversed by stauros orine, a protein kinase C (PKC) inhibitor. The change of [Ca2P] + induced by S6b was attenuated by cholera toxin pretreatmenk, but not by pertussis toxin. These data demonstrate that the initial detectable increase in [Ca2+Ii stimulated by S6b is due to the activation of ETA receptors and subsequent release of Ca2+ internal stores, whereas the contribution of external Ca2+ follows and partially involves a diltiazem- and verapamil-sensitive process. The inhibition of PMA on S6b-induced Ca2+ mobilization was inversely correlated with membraneous PKC activity.  相似文献   

8.
Freshly dissociated myocytes from nonpregnant, pregnant, and postpartum rat uteri have been studied with the tight-seal patch-clamp method. The inward current contains both INa and ICa that are vastly different from those in tissue-cultured material. INa is abolished by Na+-free medium and by 1 μM tetrodotoxin. It first appears at ∼−40 mV, reaches maximum at 0 mV, and reverses at 84 mV. It activates with a voltage-dependent τ of 0.2 ms at 20 mV, and inactivates as a single exponential with a τ of 0.4 ms. Na+ conductance is half activated at −21.5 mV, and half inactivated at −59 mV. INa reactivates with a τ of 20 ms. ICa is abolished by Ca2+-free medium, Co2+ (5 mM), or nisoldipine (2 μM), and enhanced in 30 mM Ca2+, Ba2+, or BAY-K 8644. It first appears at ∼−30 mV and reaches maximum at +10 mV. It activates with a voltage-dependent τ of 1.5 ms at 20 mV, and inactivates in two exponential phases, with τ''s of 33 and 133 ms. Ca2+ conductance is half activated at −7.4 mV, and half inactivated at −34 mV. ICa reactivates with τ''s of 27 and 374 ms. INa and ICa are seen in myocytes from nonpregnant estrus uteri and throughout pregnancy, exhibiting complex changes. The ratio of densities of peak INa/ICa changes from 0.5 in the nonpregnant state to 1.6 at term. The enhanced role of INa, with faster kinetics, allows more frequent repetitive spike discharges to facilitate simultaneous excitation of the parturient uterus. In postpartum, both currents decrease markedly, with INa vanishing from most myocytes. Estrogen-enhanced genomic influences may account for the emergence of INa, and increased densities of INa and ICa as pregnancy progresses. Other influences may regulate varied channel expression at different stages of pregnancy.  相似文献   

9.
In rat mesenteric arteries, smooth muscle cells exhibit intercellular calcium waves in response to local phenylephrine stimulation. These waves have a velocity of ∼20 cells/s and a range of ∼80 cells. We analyze these waves in a theoretical model of a population of coupled smooth muscle cells, based on the hypothesis that the wave results from cell membrane depolarization propagation. We study the underlying mechanisms and highlight the importance of voltage-operated channels, calcium-induced calcium release, and chloride channels. Our model is in agreement with experimental observations, and we demonstrate that calcium waves presenting a velocity of ∼20 cells/s can be mediated by electrical coupling. The wave velocity is limited by the time needed for calcium influx through voltage-operated calcium channels and the subsequent calcium-induced calcium release, and not by the speed of the depolarization spreading. The waves are partially regenerated, but have a spatial limit in propagation. Moreover, the model predicts that a refractory period of calcium signaling may significantly affect the wave appearance.  相似文献   

10.
11.
As a result of studies for 3 years on the roach Ratilus ratilus under natural conditions, it was shown that the Na, K, Ca, and Mg content in the blood plasma, erythrocytes, and muscle tissue as well as muscle water were maintained year after year within definite ranges characterizing normal values for these parameters. Comparison of variations in the Na, K, Ca, Mg blood plasma concentrations in different fish species revealed the presence of common limits for each of these elements. Throughout the year the most essential changes in the roach blood and tissue cation levels were found during reproduction period. During spawning the fish are characterized by the state of acute stress with parameters indicating a decrease in stability and exhaustion of adaptive possibilities in animals. Intensification of defense reactions, including those providing maintenance of the water–salt homeostasis occurs shortly before spawning for a preliminary preparation to the stress situation.  相似文献   

12.
13.
Zholos  A. V.  Tsvilovskyy  V. V.  Bolton  T. B. 《Neurophysiology》2003,35(3-4):283-301
Acetylcholine, the principal neurotransmitter of the parasympathetic nervous system, evokes smooth muscle excitation and contraction by acting at the muscarinic receptors which, in many tissues, including the gastrointestinal tract, are comprised of the M2 and M3 subtypes. The opening of ion channels selective for monovalent cations (e.g., Na+ and K+) is the major mechanism of cholinergic excitation. We have studied signal transduction pathways and single cationic channel properties using patch-clamp recording and Ca2+ imaging techniques in guinea-pig single ileal myocytes. Cationic channels were found to couple to both M2 and M3 receptors via the GTP-bound Goα and phospholipase C activation, respectively. When these primarily signaling links are established, cationic channel opening can be further potentiated by membrane depolarization and an increase in the intracellular Ca2+ concentration. A strong synergism exists between the receptor occupancy by the agonist and intrinsic voltage dependence of the current as the former can effectively modulate the voltage range of cationic channel activation, while membrane depolarization produces a strong sensitizing effect. However, at potentials close to 0 mV ion flux is terminated by channel flickery block, while further depolarization induces long-lasting channel inactivation. Channel flicker is not caused by intracellular Mg2+, polyamines, or any other freely diffusible molecule and is confined to potentials around 0 mV irrespective of the driving force. Thus, it appears to be an intrinsic channel property of physiological importance as it improves conditions for the action potential discharge and propagation. Similarly, intracellular Ca2+-dependent facilitation of channel opening is counteracted by a slower desensitization. Further, the most intriguing negative control was discovered in the experiments whereby all cellular G proteins were non-selectively and persistently activated by GTPγS infusion, in which case, over time, carbachol instead of activation caused strong and almost irreversible inhibition of the cationic current. In cell-attached and outside-out membrane patches exposed to 50 μM carbachol or 200 μM internal GTPγS, the activity of three types of cationic channels was observed. They had dissimilar conductances (10, 50, and 130 pS), voltage dependence, and kinetics. The properties of the 50 pS channel are consistent with the whole-cell current behavior, at least when [Ca2+] i is “clamped” at 100 nM. The voltage-independent component of the cationic conductance, which appears at higher levels of [Ca2+] i , is likely mediated by the 130 pS channel, while the role of the 10 pS channel at present is unclear. Thus, smooth muscle cationic channels can uniquely detect and integrate many of the most important physiological signals such as the active conformation of two different muscarinic receptors, their associated G proteins and enzymes, as well as membrane potential and [Ca2+] i levels. Moreover, some signals act in synergy, while most of them, depending on the intensity, can be either stimulatory or inhibitory.  相似文献   

14.
15.
Stretch of the vascular wall stimulates smooth muscle hypertrophy by activating the MAPK and Rho/Rho kinase (ROK) pathways. We investigated the role of calcium in this response. Stretch-stimulated expression of contractile and cytoskeletal proteins in mouse portal vein was inhibited at mRNA and protein levels by blockade of voltage-dependent Ca2+ entry (VDCE). In contrast, blockade of store-operated Ca2+ entry (SOCE) did not affect smooth muscle marker expression but decreased global protein synthesis. Activation of VDCE caused membrane translocation of RhoA followed by phosphorylation of its downstream effectors LIMK-2 and cofilin-2. Stretch-activated cofilin-2 phosphorylation depended on VDCE but not on SOCE. VDCE was associated with increased mRNA expression of myocardin, myocyte enhancer factor (MEF) -2A and -2D, and smooth muscle marker genes, all of which depended on ROK activity. SOCE increased ERK1/2 phosphorylation and c-Fos expression but had no effect on phosphorylation of LIMK-2 and cofilin-2 or on myocardin and MEF2 expression. Knockdown of MEF2A or -2D eliminated the VDCE-induced activation of myocardin expression and increased basal c-Jun and c-Fos mRNA levels. These results indicate that MEF2 mediates VDCE-dependent stimulation of myocardin expression via the Rho/ROK pathway. In addition, SOCE activates the expression of immediate-early genes, known to be regulated by MEF2 via Ca2+-dependent phosphorylation of histone deacetylases, but this mode of Ca2+ entry does not affect the Rho/ROK pathway. Compartmentation of Ca2+ entry pathways appears as one mechanism whereby extracellular and membrane signals influence smooth muscle phenotype regulation, with MEF2 as a focal point.  相似文献   

16.
Bundles of sheep ventricular fibers were voltage-clamped utilizing a modified sucrose gap technique and intracellular voltage control. An action potential was fired off in the usual way, and the clamp circuit was switched on at preselected times during activity. Clamping the membrane back to its resting potential during the early part of an action potential resulted in a surge of inward current. The initial amplitude of this current surge decreased as the clamp was switched on progressively later during the action potential. Inward current decreasing as a function of time was also recorded if the membrane potential was clamped beyond the presumed K equilibrium potential (to -130 mv). Clamping the membrane to the inside positive range (+40 mv to +60 mv) at different times of an action potential resulted in a step of outward current which was not time-dependent. The results suggest that normal repolarization of sheep ventricle depends on a time-dependent decrease of inward current (Na, Ca) rather than on a time-dependent increase of outward current (K).  相似文献   

17.
Autoradiographic Studies of Intracellular Calcium in Frog Skeletal Muscle   总被引:15,自引:6,他引:9  
Autoradiographs consisting of a 1000 A thick tissue section and a 1400 A thick emulsion film have been prepared from frog toe muscles labeled with Ca45. The muscles had been fixed with an oxalate-containing osmium solution at rest at room temperature, at rest at 4°C, during relaxation following K+ depolarization or after prolonged depolarization. From 6 to 39 per cent of K+ contracture tension was produced during fixation. The grains in the autoradiographs were always concentrated in the center 0.2 to 0.3 µ of the I band and the region of the overlapping of the thick and thin filaments. The greater the tension produced during fixation, the greater was the concentration in the A band and the smaller the concentration in the I band. Autoradiographs of two muscles fixed by freeze-substitution resembled those of muscles which produced little tension during osmium fixation. Muscles which shortened during fixation produced fewer grains. In the narrow (<2.0 µ) sarcomeres of the shortened muscles, grain density decreased with decreasing sarcomere width. A theoretical analysis of the significance of these grain distributions is proposed and discussed.  相似文献   

18.
Selenium (Se) is an essential micronutrient affecting various aspects of health. The balance of the Se concentration has an important protective and promoter effect on physiological function in inducing muscular disorders in smooth muscle. Selenoprotein N (SelN) is closely related to Ca2+ release. The present study aimed to determine the effects and mechanism of action of dietary Se on uterine smooth muscle contraction via SelN using a mouse model. Quantitative polymerase chain reaction (qPCR) analysis was performed to detect mRNA levels. Western blotting was performed to detect protein levels. The results of the immunohistochemical analysis showed that Se had an effect on the uterine smooth muscle. The Se-supplement increased the release of Ca2+, Ca2+-calmodulin (CaM) expression, myosin light chain kinase (MLCK) expression, and myosin light chain (MLC) phosphorylation but did not affect ROCK and RhoA in uterine smooth muscle. Furthermore, the lack of Se showed an opposite impact. The effects of Se regulation were closely related to SelN. The interference of mouse SelN was performed on the uterine smooth muscle cell. Additionally, the results displayed the regulation of Se on the release of Ca2+, CaM expression, MLCK expression, and MLC phosphorylation were significant inhibited, and there was no effect on ROCK and RhoA. In conclusion, Se played an important role in regulating the process of contraction in uterine smooth muscle with SelN.  相似文献   

19.
Isolated longitudinal smooth muscle from guinea pig ileum exposed to a high potassium depolarizing medium exhibited a sustained increase in muscle tone and an increase in potassium efflux. When the concentration of calcium ion in the medium was elevated the increase in muscle tone was enhanced, but the change in potassium efflux was reduced slightly. Lowering the calcium concentration diminished the increase in muscle tone. Both cocaine and ethanol completely inhibited the sustained contraction of potassium-depolarized fibers. Addition of excess calcium ion reversed these inhibitions. Cocaine acted primarily like a competitive antagonist; and ethanol, like an indirect antagonist of calcium, ion. Under certain conditions acetylcholine potentiated the reversal by calcium ion of the drug-induced inhibitions. The two inhibitory drugs had dissimilar effects on potassium efflux from smooth muscle fibers immersed in Tyrode solution. Cocaine depressed and ethanol enhanced this membrane process. However, the increase in potassium efflux induced by acetylcholine was inhibited by ethanol. This inhibition also was reversed by increasing the concentration of calcium ion in the medium. The data suggested that calcium activates and cocaine and ethanol inhibit a cellular reaction which occurs beyond the point of membrane depolarization and is essential for smooth muscle contraction. Furthermore, calcium serves to depress membrane excitability, but appears to have a specific stimulatory role in the acetylcholine-induced increase in potassium efflux from longitudinal fibers.  相似文献   

20.
Cut muscle fibers from Rana temporaria (sarcomere length, 3.5–3.9 μm; 14–16°C) were mounted in a double Vaseline-gap chamber and equilibrated with an external solution that contained tetraethyl ammonium– gluconate and an internal solution that contained Cs as the principal cation, 20 mM EGTA, and 0 Ca. Fibers were stimulated with a voltage-clamp pulse protocol that consisted of pulses to −70, −65, −60, −45, and −20 mV, each separated by 400-ms periods at −90 mV. The change in total Ca that entered into the myoplasm (Δ[CaT]) and the Ca content of the SR ([CaSR]) were estimated with the EGTA/phenol red method (Pape, P.C., D.-S. Jong, and W.K. Chandler. 1995. J. Gen. Physiol. 106:259–336). Fibers were stimulated with the pulse protocol, usually every 5 min, so that the resting value of [CaSR] decreased from its initial value of 1,700–2,300 μM to values near or below 100 μM after 18–30 stimulations. Three main findings for the voltage pulses to −70, −65, and −60 mV are: (a) the depletion-corrected rate of Ca release (release permeability) showed little change when [CaSR] decreased from its highest level (>1,700 μM) to ∼1,000 μM; (b) as [CaSR] decreased below 1,000 μM, the release permeability increased to a maximum level when [CaSR] was near 300 μM that was on average about sevenfold larger than the values observed for [CaSR] > 1,000 μM; and (c) as [CaSR] decreased from ∼300 μM to <100 μM, the release permeability decreased, reaching half its maximum value when [CaSR] was ∼110 μM on average. It was concluded that finding b was likely due to a decrease in Ca inactivation, while finding c was likely due to a decrease in Ca-induced Ca release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号