首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Platelet-activating factor acetylhydrolase (PAF-AH)   总被引:4,自引:0,他引:4  
Platelet-activating factor (PAF) is one of the most potent lipid messengers involved in a variety of physiological events. The acetyl group at the sn-2 position of its glycerol backbone is essential for its biological activity, and its deacetylation induces loss of activity. The deacetylation reaction is catalyzed by PAF-acetylhydrolase (PAF-AH). A series of biochemical and enzymological evaluations revealed that at least three types of PAF-AH exist in mammals, namely the intracellular types I and II and a plasma type. Type I PAF-AH is a G-protein-like complex consisting of two catalytic subunits (alpha1 and alpha2) and a regulatory beta subunit. The beta subunit is a product of the LIS1 gene, mutations of which cause type I lissencephaly. Recent studies indicate that LIS1/beta is important in cellular functions such as induction of nuclear movement and control of microtubule organization. Although substantial evidence is accumulating supporting the idea that the catalytic subunits are also involved in microtubule function, it is still unknown what role PAF plays in the process and whether PAF is an endogenous substrate of this enzyme. Type II PAF-AH is a single polypeptide and shows significant sequence homology with plasma PAF-AH. Type II PAF-AH is myristoylated at the N-terminus and like other N-myristoylated proteins is distributed in both the cytosol and membranes. Plasma PAF-AH is also a single polypeptide and exists in association with plasma lipoproteins. Type II PAF-AH as well as plasma PAF-AH may play a role as a scavenger of oxidized phospholipids which are thought to be involved in diverse pathological processes, including disorganization of membrane structure and PAF-like proinflammatory action. In this review, we will focus on the structures and possible biological functions of intracellular PAF-AHs.  相似文献   

2.
PAF-like activity in the endometrium increased from days 2-4 to day 12 and day 20 in both cyclic and pregnant cows. There was an increase in platelet aggregation induced by PAF-like activity in the endometrium of pregnant animals on day 20 as compared to cyclic animals at the same point in time. Two major bands of PAF-R protein at 67 kDa and 97 kDa were detected by Western blot analysis. PAF-R was localized mainly in luminal and glandular epithelium of the endometrium, but the staining was markedly increased in the endometrium of pregnant cows on day 20 compared to cyclic animals on the same day. The purified PAF-AH from the endometrium is similar to in plasma. In cyclic cattle, no changes in PAF-AH activity of endometrium were observed, whereas a decrease in enzyme activity occurred in pregnant cows on day 20 as compared to cyclic animals on the same day. We suggest that the bovine endometrium produces PAF-like activity, expresses the PAF-R and possesses a PAF-AH activity which varies during pregnancy.  相似文献   

3.
PAF-like activity in the endometrium increased from days 2-4 to day 12 and day 20 in both cyclic and pregnant cows. There was an increase in platelet aggregation induced by PAF-like activity in the endometrium of pregnant animals on day 20 as compared to cyclic animals at the same point in time. Two major bands of PAF-R protein at 67 kDa and 97 kDa were detected by Western blot analysis. PAF-R was localized mainly in luminal and glandular epithelium of the endometrium, but the staining was markedly increased in the endometrium of pregnant cows on day 20 compared to cyclic animals on the same day. The purified PAF-AH from the endometrium is similar to in plasma. In cyclic cattle, no changes in PAF-AH activity of endometrium were observed, whereas a decrease in enzyme activity occurred in pregnant cows on day 20 as compared to cyclic animals on the same day. We suggest that the bovine endometrium produces PAF-like activity, expresses the PAF-R and possesses a PAF-AH activity which varies during pregnancy.  相似文献   

4.
5.
The corpus luteum is the main source of progesterone (P(4)) responsible for maintenance of gestation in cattle. So far it has not been possible to assign any biological role to placental P(4), which contributes only marginally and temporarily to peripheral maternal blood levels. In order to identify possible P(4) target cells within the placenta, placentomes from 150-, 220-, 240-, and 270-day-pregnant cows and from parturient cows (3 animals per group) were screened immunohistochemically for expression of the progesterone receptor (PR). During gestation, PR-positive staining was found exclusively in the nuclei of caruncular stromal cells (CSC; maternal part of the placentome) and of caruncular vascular pericytes. In placentomes from parturient cows, occasional positive nuclear staining was also observed in the walls of small caruncular arteries. The percentage of PR-positive CSC increased slightly from 51.8 +/- 2.6% on Day 150 to 56.2 +/- 5.6% at Day 270 (p < 0.05) and was 58.9 +/- 1.8% at parturition. These results suggest that in pregnant cattle, CSC are under the control of P(4) of placental rather than luteal origin. Thus, whereas luteal P(4) may regulate "coarse" systemic progestational functions in the maternal compartment in the classical hormonal manner, placental P(4) may act as a paracrine factor involved in the local regulation of caruncular growth, differentiation, and functions.  相似文献   

6.
Pregnancy associated glycoproteins (PAGs) are extensively glycosylated secretory proteins of ruminant trophoblast cells. In cattle placenta several PAG cDNAs are expressed, but the variety of correspondent proteins and their degree of glycosylation are not well characterized. Thus, we purified PAGs by using a protocol which included a lectin (Vicia villosa agglutinin) affinity chromatography. Due to their specific glycosylation pattern, PAGs derived from binucleate trophoblast giant cells were highly enriched by this protocol. PAGs were purified from cotyledons of 2 day 100 placentas and from a single placenta at day 155 and 180. In all samples three major bands (75; 66; 56 kDa) were detected by one-dimensional SDS-PAGE. Mass-spectrometric analysis identified the 75 kDa band as a mixture of PAG-7 and PAG-6, the 66 kDa band as PAG-1 and the 56 kDa band as PAG-17. N-terminal sequencing of the day 100 sample confirmed the mass spectrometric identifications. Enzymatic release of N-glycans with peptide-N-glycanase-F from PAGs reduced the molecular weight to approximately 37 kDa which corresponds to the theoretical molecular mass of PAGs. Limited peptide-N-glycanase-F treatment revealed that all four N-glycosylation sites are quantitatively occupied in PAG-1. Compared to PAG-1 the number of potential N-glycosylation sites is lower in PAG-17 (three sites) and higher in PAG-6 and -7 (five and six sites, respectively). This suggests that the number of attached N-glycans is the main determinant of molecular mass of bovine PAGs. The degree of glycosylation may be a major factor regulating the plasma half life of PAGs.  相似文献   

7.
Platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is a biologically active phospholipid mediator. Although PAF was initially recognized for its potential to induce platelet aggregation and secretion, intense investigations have elucidated potent biological actions of PAF in a broad range of cell types and tissues, many of which also produce the molecule. PAF acts by binding to a unique G-protein-coupled seven transmembrane receptor. PAF receptor is linked to intracellular signal transduction pathways, including turnover of phosphatidylinositol, elevation in intracellular calcium concentration, and activation of kinases, resulting in versatile bioactions. On the basis of numerous pharmacological reports, PAF is thought to have many pathophysiological and physiological functions. Recently advanced molecular technics enable us not only to clone PAF receptor cDNAs and genes, but also generate PAF receptor mutant animals, i.e., PAF receptor-overexpressing mouse and PAF receptor-deficient mouse. These mutant mice gave us a novel and specific approach for identifying the pathophysiological and physiological functions of PAF. This review also describes the phenotypes of these mutant mice and discusses them by referring to previously reported pharmacological and genetical data.  相似文献   

8.
The circulating level of platelet-activating factor acetylhydrolase (PAF-AH) is a novel biomarker to predict the presence of coronary heart disease. PAF-AH gene polymorphisms may be responsible for the variance of circulating PAF-AH levels in individuals. However, the association of PAF-AH gene polymorphisms with circulating PAF-AH levels and the susceptibility to coronary heart disease (CHD) remains unsolved. Blood stasis syndrome (BSS) of CHD is the most common type of TCM syndromes, and a previous study discovered its relationship with the elevated circulating PAF-AH levels. However, the association of gene polymorphisms and CHD with BSS is unclear at present. In this study, four polymorphisms (R92H, I198T, A379V, V279F) of the PAF-AH gene were genotyped in 570 CHD patients, of which 299 had BSS. In addition, 317 unaffected individuals from the same hospitals served as controls. Plasma PAF-AH levels were measured in 155 controls and 271 CHD patients selected randomly, including 139 CHD patients with BSS. In the Chinese Han population, plasma PAF-AH levels in CHD patients with BSS or without BSS were significantly higher (12.9 ± 6.5 and 11.1 ± 5.0 μM, respectively) than in controls (9.3 ± 5.2 μM); this difference still remained significant after adjustment for traditional risk factors or the inflammatory factors. The R92H polymorphism was highly related to the plasma PAF-AH levels and the risk of CHD, especially among patients with BSS, even with the adjustment for the effects of traditional factors. The I198T polymorphism was highly associated with risk of CHD with BSS, but was associated with neither the risk of CHD with no BSS nor with elevated plasma PAF-AH levels.  相似文献   

9.
Mutation of the nuclear receptor peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) severely affects placenta development, leading to embryonic death at embryonic day 9.5 (E9.5) to E10.5 of most, but not all, PPARbeta/delta-null mutant embryos. While very little is known at present about the pathway governed by PPARbeta/delta in the developing placenta, this paper demonstrates that the main alteration of the placenta of PPARbeta/delta-null embryos is found in the giant cell layer. PPARbeta/delta activity is in fact essential for the differentiation of the Rcho-1 cells in giant cells, as shown by the severe inhibition of differentiation once PPARbeta/delta is silenced. Conversely, exposure of Rcho-1 cells to a PPARbeta/delta agonist triggers a massive differentiation via increased expression of 3-phosphoinositide-dependent kinase 1 and integrin-linked kinase and subsequent phosphorylation of Akt. The links between PPARbeta/delta activity in giant cells and its role on Akt activity are further strengthened by the remarkable pattern of phospho-Akt expression in vivo at E9.5, specifically in the nucleus of the giant cells. In addition to this phosphatidylinositol 3-kinase/Akt main pathway, PPARbeta/delta also induced giant cell differentiation via increased expression of I-mfa, an inhibitor of Mash-2 activity. Finally, giant cell differentiation at E9.5 is accompanied by a PPARbeta/delta-dependent accumulation of lipid droplets and an increased expression of the adipose differentiation-related protein (also called adipophilin), which may participate to lipid metabolism and/or steroidogenesis. Altogether, this important role of PPARbeta/delta in placenta development and giant cell differentiation should be considered when contemplating the potency of PPARbeta/delta agonist as therapeutic agents of broad application.  相似文献   

10.
Trophoblast giant cells in the mouse placentas are polyploid cells that form as a result of endoreduplication. The giant cells form the outermost layer of the extraembryonic compartment and produce a number of pregnancy-specific hormones, including prolactin family members. Here we demonstrate that trophoblast giant cells are increased, and display upregulation of prolactin releasing peptide (PrRP) receptor in the p53-null (p53(-/-)) embryonic placentas. At day 13.5 of gestation, the weight of p53(-/-) placentas was less than that of both wild-type and p53(+/-) placentas. In p53(-/-) placentas, the spongiotrophoblast layer was significantly decreased in thickness, and the trophoblast giant cells were observed not only in the outer layer of placentas but in both the spongiotrophoblast layer and the labyrinthine layer. The giant cells spread over the spongiotrophoblast and labyrinthine layer in p53(-/-) placentas displayed more intensive expression of immunoreactive PrRP receptor than in wild-type placentas. Previous studies indicated that the association between PrRP and PrRP receptor physiologically involves in the expression and secretion of the peptide hormones, including prolactin and growth hormones. These results suggest that p53 may regulate the differentiation of trophoblast giant cells, and may control the physiological PrRP stimuli in mouse placentas.  相似文献   

11.
Mean gestation for seven free-ranging Tana River crested mangabeys (Cercocebus galeritus galeritus) is 180 days (SE = 4.49). All females showed postconception sexual swellings after the first 2 months of pregnancy, and two of the seven copulated with males at this time. One birth was observed; observations of a second infant began less than 1 hr after birth. Details of parturition are given, with responses of group members to the events. Adult and juvenile females showed more sustained interest in the new infants than adult or juvenile males.  相似文献   

12.
The protection of chromosome ends requires the inhibition of DNA damage responses at telomeres. This inhibition is exerted in great part by the shelterin complex, known to prevent inappropriate ATM and ATR activation. The molecular mechanisms by which shelterin protects telomeres are incompletely understood. Recently, we have implicated for the first time a class of molecules, LIM domain proteins, in telomere protection. This protection occurred through interaction with shelterin, possibly through POT1, and required the pair of LIM proteins TRIP6 and LPP, themselves part of the Zyxin family. The domain similarity between TRIP6, LPP and Zyxin led us to ask whether the latter also interacted with telomeres. Here, we show that there is specificity in the association of LIM proteins with telomeres: Zyxin, despite a high degree of similarity with TRIP6 and LPP, was not detected at telomeres, nor found in a complex with shelterin. TRIP6 and LPP, however, were detected by immunofluorescence at a small subset of telomeres, perhaps those that are critically short. We speculate that specific LIM proteins are part of complex events occurring in the context of the telomere dysfunction response, and possibly at play during the induction of senescence.  相似文献   

13.
The protection of chromosome ends requires the inhibition of DNA damage responses at telomeres. This inhibition is exerted in great part by the shelterin complex, known to prevent inappropriate ATM and ATR activation. The molecular mechanisms by which shelterin protects telomeres are incompletely understood. Recently, we have implicated for the first time a class of molecules, LIM domain proteins, in telomere protection. This protection occurred through interaction with shelterin, possibly through POT1, and required the pair of LIM proteins TRIP6 and LPP, themselves part of the Zyxin family. The domain similarity between TRIP6, LPP and Zyxin led us to ask whether the latter also interacted with telomeres. Here, we show that there is specificity in the association of LIM proteins with telomeres: Zyxin, despite a high degree of similarity with TRIP6 and LPP, was not detected at telomeres, nor found in a complex with shelterin. TRIP6 and LPP, however, were detected by immunofluorescence at a small subset of telomeres, perhaps those that are critically short. We speculate that specific LIM proteins are part of complex events occurring in the context of the telomere dysfunction response and are possibly at play during the induction of senescence.Key words: telomere, LIM domain, shelterin, POT1, TRIP6, LPP, zyxin, DNA damage  相似文献   

14.
The vascular inflammatory role of platelet activating factor acetylhydrolase (PAF-AH) is thought to be due to the formation of lysophosphatidyl choline and oxidized non-esterified fatty acids. This enzyme is considered a promising therapeutic target for the prevention of atherosclerosis and there is a need to expand the available chemical templates of PAF-AH inhibitors. This study demonstrated how natural PAF-AH inhibitory peptides were isolated and characterized from the red macroalga Palmaria palmata. The dried powdered alga was hydrolyzed using the food grade enzyme papain, and the resultant peptide containing fraction generated using RP-HPLC. Several oligopeptides were identified as potential PAF-AH inhibitors following bio-guided fractionation, and the amino acid sequences of these oligopeptides were confirmed by Q-TOF-MS and microwave-assisted solid phase de novo synthesis. The most promising PAF-AH inhibitory peptide had the amino acid sequence NIGK and a PAF-AH IC50 value of 2.32 mM. This peptide may constitute a valid drug template for PAF-AH inhibitors. Furthermore the P. palmata hydrolysate was nontoxic when assayed using the Zebrafish toxicity model at a concentration of 1 mg/ml.  相似文献   

15.
16.
17.
Differentiation and restricted invasion/migration of trophoblast cells are crucial for feto‐maternal communication in the synepitheliochorial placenta of cattle. EGF is expressed in the bovine placenta and likely regulates these cell properties. As cell migration and motility rely on the degradation of extracellular matrix we hypothesize that EGF is involved in the regulation of the MMP‐9/TIMP‐1 balance and thus could influence trophoblast migration, tissue remodeling, and the release of the fetal membranes after parturition. The aim of this in vitro study was to examine EGF‐mediated effects on cell motility, proliferation, and MMP‐9 and TIMP‐1 expression in cultured bovine trophoblast cells. We used a trophoblast cell line (F3) derived from bovine placentomes to examine the influence of EGF on MMP‐9 and TIMP‐1 expression by semiquantitative RT‐PCR and MMP activity by zymography. Migration assays were performed using a Boyden chamber and cell motility was measured by time‐lapse analyses. To identify the involved signaling cascades, phosphorylation of mitogen‐activated protein kinase (MAPK) 42/44 and Akt was detected by Western blot. EGF treatment increased both the abundance of MMP‐9 and TIMP‐1 mRNAs and the proteolytic activity of MMP‐9. Furthermore, EGF stimulated proliferation and migration of F3 cells. Addition of specific inhibitors of MAPK (PD98059) and/or PI3K (LY294002) activation abolished or reduced EGF‐induced effects in all experiments. In conclusion, EGF‐mediated effects stimulate migration and proliferation of bovine trophoblast cells and may be involved in bovine placental tissue remodeling and postpartum release of fetal membranes. Mol. Reprod. Dev. 77: 622–629, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
The epidermal growth factor receptor (EGFR) and the non-receptor protein tyrosine kinases Src and Pyk2 have been implicated in linking a variety of G-protein-coupled receptors (GPCR) to the mitogen-activated protein (MAP) kinase signaling cascade. In this report we apply a genetic strategy using cells isolated from Src-, Pyk2-, or EGFR-deficient mice to explore the roles played by these protein tyrosine kinases in GPCR-induced activation of EGFR, Pyk2, and MAP kinase. We show that Src kinases are critical for activation of Pyk2 in response to GPCR-stimulation and that Pyk2 and Src are essential for GPCR-induced tyrosine phosphorylation of EGFR. By contrast, Pyk2, Src, and EGFR are dispensable for GPCR-induced activation of MAP kinase. Moreover, GPCR-induced MAP kinase activation is normal in fibroblasts deficient in both Src and Pyk2 (Src-/-Pyk2-/- cells) as well as in fibroblasts deficient in all three Src kinases expressed in these cells (Src-/-Yes-/-Fyn-/- cells). Finally, experiments are presented demonstrating that, upon stimulation of GPCR, activated Pyk2 forms a complex with Src, which in turn phosphorylates EGFR directly. These experiments reveal a role for Src kinases in Pyk2 activation and a role for Pyk2 and Src in tyrosine phosphorylation of EGFR following GPCR stimulation. In addition, EGFR, Src family kinases, and Pyk2 are not required for linking GPCRs with the MAP kinase signaling cascade.  相似文献   

19.
This study characterized endometrial expression of mRNAs of oestrogen and progesterone receptors (ER, PR) and insulin-like growth factor-I (IGF-I) during the oestrous cycle. Seven Holstein heifers that showed standing oestrus on the same day (day 0) were selected and blood samples for oestradiol (E2) and progesterone (P4) determinations by RIA were taken daily until day 23. Endometrial samples were taken by transcervical biopsies on days 0, 5, 12 and 19 for mRNA determination by solution hybridization. The highest endometrial mRNA levels of ERalpha and PR were observed at oestrus and a decline was observed already at day 5, which then decreased progressively at the end of the luteal phase. IGF-I mRNA levels were higher at day 0 and 5 than at day 12. At day 19, mRNA levels of ERalpha, PR and IGF-I were the lowest in heifers that were at the end of their luteal phase (n=4), but were high again in heifers which P4 levels were basal (n=3). The temporal changes in mRNA endometrial expression of ERalpha, PR and IGF-I and their relation to the changes in steroid concentrations during the bovine oestrus cycle are described.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号