首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ecology of Legionella pneumophila within water distribution systems.   总被引:11,自引:10,他引:1       下载免费PDF全文
J E Stout  V L Yu    M G Best 《Applied microbiology》1985,49(1):221-228
The reservoir for hospital-acquired Legionnaires disease has been shown to be the potable water distribution system. We investigated the influence of the natural microbial population and sediment (scale and organic particulates) found in water systems as growth-promoting factors for Legionella pneumophila. Our in vitro experiments showed that: (i) water from hot-water storage tank readily supported the survival of L. pneumophila, (ii) the concentration of sediment was directly related to the survival of L. pneumophila, (iii) the presence of environmental bacteria improved the survival of L. pneumophila via nutritional symbiosis, (iv) the combination of sediment and environmental bacteria acted synergistically to improve the survival of L. pneumophila, and (v) the role of sediment in this synergistic effect was determined to be nutritional. Sediment was found to stimulate the growth of environmental microflora, which in turn stimulated the growth of L. pneumophila. These findings confirm the empiric observations of the predilection of L. pneumophila for growth in hot-water tanks and its localization to sediment. L. pneumophila occupies an ecological niche within the potable water system, with interrelationships between microflora, sediment, and temperature.  相似文献   

2.
Ecology of Legionella pneumophila within water distribution systems   总被引:7,自引:0,他引:7  
The reservoir for hospital-acquired Legionnaires disease has been shown to be the potable water distribution system. We investigated the influence of the natural microbial population and sediment (scale and organic particulates) found in water systems as growth-promoting factors for Legionella pneumophila. Our in vitro experiments showed that: (i) water from hot-water storage tank readily supported the survival of L. pneumophila, (ii) the concentration of sediment was directly related to the survival of L. pneumophila, (iii) the presence of environmental bacteria improved the survival of L. pneumophila via nutritional symbiosis, (iv) the combination of sediment and environmental bacteria acted synergistically to improve the survival of L. pneumophila, and (v) the role of sediment in this synergistic effect was determined to be nutritional. Sediment was found to stimulate the growth of environmental microflora, which in turn stimulated the growth of L. pneumophila. These findings confirm the empiric observations of the predilection of L. pneumophila for growth in hot-water tanks and its localization to sediment. L. pneumophila occupies an ecological niche within the potable water system, with interrelationships between microflora, sediment, and temperature.  相似文献   

3.
Mycobacterium avium complex (MAC) is a group of opportunistic pathogens of major public health concern. It is responsible for a wide spectrum of disease dependent on subspecies, route of infection and patients pre-existing conditions. Presently, there is limited research on the incidence of MAC infection that considers both pulmonary and other clinical manifestations. MAC has been isolated from various terrestrial and aquatic environments including natural waters, engineered water systems and soils. Identifying the specific environmental sources responsible for human infection is essential in minimizing disease prevalence. This paper reviews current literature and case studies regarding the wide spectrum of disease caused by MAC and the role of potable water in disease transmission. Potable water was recognized as a putative pathway for MAC infection. Contaminated potable water sources associated with human infection included warm water distribution systems, showers, faucets, household drinking water, swimming pools and hot tub spas. MAC can maintain long-term contamination of potable water sources through its high resistance to disinfectants, association with biofilms and intracellular parasitism of free-living protozoa. Further research is required to investigate the efficiency of water treatment processes against MAC and into construction and maintenance of warm water distribution systems and the role they play in MAC proliferation.  相似文献   

4.
Water suppliers face increased pressure to explain the relative health risks from non-regulated xenobiotics that may be present in recycled water, including pharmaceuticals and personal care products (PPCPs) and endocrine disrupting compounds. This report reviews their occurrence, fate, and recent human health risk assessments for potable and non-potable water reuse. The most effective advanced treatment for PPCPs is reverse osmosis (RO) followed by advanced oxidation. During soil aquifer treatment, the majority of PPCPs are attenuated relatively quickly (within 100 days), yet some are persistent and can migrate to the underlying groundwater at low concentrations. Recently, several investigations have assessed the potential human health risks associated with xenobiotics in recycled water, focusing on exposure from drinking water (e.g., planned and unplanned indirect potable reuse) and non-potable reuse (e.g., exposure via recreational, occupational, and irrigation-related activities at sites utilizing recycled water). Risk assessments conducted over the last 10 years have found no adverse human health effects or significant risks. Though advanced treatment of wastewater that is discharged or recycled may not be required to protect public health, it may be necessary to prevent potential effects on exposed biota and to address, to some degree, the public's perception of water reuse.  相似文献   

5.
The effect of the length of time between sampling potable water and performing coliform analyses has been a long-standing controversial issue in environmental microbiology. The issue is of practical importance since reducing the sample-to-analysis time may substantially increase costs for water analysis programs. Randomly selected samples (from those routinely collected throughout the State of Wisconsin) were analyzed for total coliforms after being held at room temperature (20 +/- 2 degrees C) for 24 and 48 h. Differences in results for the two holding times were compared with differences predicted by probability calculations. The study showed that storage of the potable water for up to 48 h had little effect on the public health significance of most samples containing more than two coliforms per 100 ml.  相似文献   

6.
The effect of the length of time between sampling potable water and performing coliform analyses has been a long-standing controversial issue in environmental microbiology. The issue is of practical importance since reducing the sample-to-analysis time may substantially increase costs for water analysis programs. Randomly selected samples (from those routinely collected throughout the State of Wisconsin) were analyzed for total coliforms after being held at room temperature (20 +/- 2 degrees C) for 24 and 48 h. Differences in results for the two holding times were compared with differences predicted by probability calculations. The study showed that storage of the potable water for up to 48 h had little effect on the public health significance of most samples containing more than two coliforms per 100 ml.  相似文献   

7.
矿泉水是地下水从含水层中经长期与岩石相互作用形成、富含有益于人体的丰富矿物质和微量元素的一类顶级饮用地下水资源.在水资源污染严重而且生态环境不断恶化的今天,基于新的科技认知手段重新认识矿泉水的生态和健康效应,具有重要意义.黑龙江省五大连池风景区拥有着五大连池旅游疗养业赖以生存和发展的优质矿泉水资源,并且被应用于医疗和保健方面已有百余年历史,但是面临着资源量减少、环境污染等问题的威胁.本文主要针对五大连池矿泉水的形成过程、分布规律、水化学和微生物特征及其健康效应等进行综合评述,侧重其微生物特征的研究进展,提出了未来五大连池矿泉的研究展望.为了更好地保护和利用五大连池矿泉水,建议五大连池周边农场发展绿色生态农业,减少化肥的施用;在开发旅游和疗养资源的同时,要严格建立污染风险的评估和管控体系,减少“新型”环境污染物对地质生态环境的可能污染.  相似文献   

8.
PROBLEM STATEMENT: Recent commercial and residential development have substantially impacted the fluxes and quality of water that recharge the aquifers and discharges to streams, lakes and wetlands and, ultimately, is recycled for potable use. Whereas the contaminant sources may be varied in scope and composition, these issues of urban water sustainability are of public health concern at all levels of economic development worldwide, and require cheap and innovative environmental sensing capabilities and interactive monitoring networks, as well as tailored distributed water treatment technologies. To address this need, a roundtable was organized to explore the potential role of advances in biotechnology and bioengineering to aid in developing causative relationships between spatial and temporal changes in urbanization patterns and groundwater and surface water quality parameters, and to address aspects of socioeconomic constraints in implementing sustainable exploitation of water resources. WORKSHOP OUTCOMES: An interactive framework for quantitative analysis of the coupling between human and natural systems requires integrating information derived from online and offline point measurements with Geographic Information Systems (GIS)-based remote sensing imagery analysis, groundwater-surface water hydrologic fluxes and water quality data to assess the vulnerability of potable water supplies. Spatially referenced data to inform uncertainty-based dynamic models can be used to rank watershed-specific stressors and receptors to guide researchers and policymakers in the development of targeted sensing and monitoring technologies, as well as tailored control measures for risk mitigation of potable water from microbial and chemical environmental contamination. The enabling technologies encompass: (i) distributed sensing approaches for microbial and chemical contamination (e.g. pathogens, endocrine disruptors); (ii) distributed application-specific, and infrastructure-adaptive water treatment systems; (iii) geostatistical integration of monitoring data and GIS layers; and (iv) systems analysis of microbial and chemical proliferation in distribution systems. IMPACT: This operational framework is aimed at technology implementation while maximizing economic and public health benefits. The outcomes of the roundtable will further research agendas in information technology-based monitoring infrastructure development, integration of processes and spatial analysis, as well as in new educational and training platforms for students, practitioners and regulators. The potential for technology diffusion to emerging economies with limited financial resources is substantial.  相似文献   

9.
Lack of access to potable water has forced many inhabitants of informal settlements in South Africa to rely on surface water sources for their daily water needs, thus exposing these communities to microbial contamination that can result in water-borne diseases. These water sources also serve as natural habitats of pathogenic E. coli strains which harbour virulence factors, which could play a role in the disease process, as well as various multi-drug resistant water-borne pathogens. This study investigated the microbiological quality of two river waters in Durban, South Africa, using total coliform and faecal coliform population as indices. The virulence markers and antibiogram profiles of the E. coli isolates from these rivers were also determined. The results indicated that water from these river sources were of poor microbiological quality and unfit for human consumption. Antibiotic Resistance Profiles of the isolates revealed that 97.1% of the Palmiet River isolates and 71.15% of the Umgeni River isolates were multi-resistant to the antibiotics tested, with all the isolates found to be resistant to novobiocin. Characterization of the virulence markers revealed the presence of stx1, cnf1 and eaeA genes, indicating the possible health risk associated with the ingestion of water from these rivers. The inherent health risks associated with the use of these river water emphasises the need for safe water supply and provision of proper sanitation facilities for the inhabitants of the informal settlements along these river banks.  相似文献   

10.
Reclaimed water use is an important component of sustainable water resource management. However, there are concerns regarding pathogen transport through this alternative water supply. This study characterized the viral community found in reclaimed water and compared it with viruses in potable water. Reclaimed water contained 1000-fold more virus-like particles than potable water, having approximately 108 VLPs per millilitre. Metagenomic analyses revealed that most of the viruses in both reclaimed and potable water were novel. Bacteriophages dominated the DNA viral community in both reclaimed and potable water, but reclaimed water had a distinct phage community based on phage family distributions and host representation within each family. Eukaryotic viruses similar to plant pathogens and invertebrate picornaviruses dominated RNA metagenomic libraries. Established human pathogens were not detected in reclaimed water viral metagenomes, which contained a wealth of novel single-stranded DNA and RNA viruses related to plant, animal and insect viruses. Therefore, reclaimed water may play a role in the dissemination of highly stable viruses. Information regarding viruses present in reclaimed water but not in potable water can be used to identify new bioindicators of water quality. Future studies will need to investigate the infectivity and host range of these viruses to evaluate the impacts of reclaimed water use on human and ecosystem health.  相似文献   

11.
Alternaria species have been recognized as important cause of allergic diseases and are considered opportunistic pathogens for immunocompromised individuals. In order to assess the contribution of waters to the spread of Alternaria, we examined 390 water samples of various origin for the presence of these microorganisms in parallel with the standard pollution indicator bacteria, i.e. total coliforms, faecal coliforms and enterococci. Alternaria spp. were isolated from 42 out of 196 (21.4%) marine water samples, from 13 out of 68 (19.1%) river samples, whereas out of 126 potable waters only two (1.6%) were found positive. The incidence of Alternaria was significantly higher (p < 0.001) in marine and river samples than in potable waters. The mean values of the colony-forming units of the pollution indicator bacteria did not significantly differ between Alternaria-positive and Alternaria-negative samples.  相似文献   

12.
Genetic factors influence virtually every human disorder, determining disease susceptibility or resistance and interactions with environmental factors. Our recent successes in the genetic mapping and identification of the molecular basis of mendelian traits have been remarkable. Now, attention is rapidly shifting to more-complex, and more-prevalent, genetic disorders and traits that involve multiple genes and environmental effects, such as cardiovascular disease, diabetes, rheumatoid arthritis and schizophrenia. Rather than being due to specific and relatively rare mutations, complex diseases and traits result principally from genetic variation that is relatively common in the general population. Unfortunately, despite extensive efforts by many groups, only a few genetic regions and genes involved in complex diseases have been identified. Completion of the human genome sequence will be a seminal accomplishment, but it will not provide an immediate solution to the genetics of complex traits.  相似文献   

13.
Genetic factors influence virtually every human disorder, determining disease susceptibility or resistance and interactions with environmental factors. Our recent successes in the genetic mapping and identification of the molecular basis of mendelian traits have been remarkable. Now, attention is rapidly shifting to more-complex, and more-prevalent, genetic disorders and traits that involve multiple genes and environmental effects, such as cardiovascular disease, diabetes, rheumatoid arthritis and schizophrenia. Rather than being due to specific and relatively rare mutations, complex diseases and traits result principally from genetic variation that is relatively common in the general population. Unfortunately, despite extensive efforts by many groups, only a few genetic regions and genes involved in complex diseases have been identified. Completion of the human genome sequence will be a seminal accomplishment, but it will not provide an immediate solution to the genetics of complex traits.  相似文献   

14.
The occurrence of pigmented bacteria in potable water, from raw source water through treatment to distribution water, including dead-end locations, was compared at sample sites in a large municipal water system. Media used to enumerate heterotrophic bacteria and differentiate pigmented colonies were standard method plate count (SPC), m-SPC, and R2A agars, incubated up to 7 days at 35 degrees C. The predominant pigmented bacteria at most sample locations were yellow and orange, with a small incidence of pink organisms at the flowing distribution site. Seasonal variations were seen, with the yellow and orange organisms shifting in dominance. SPC agar was the least productive medium for both heterotroph counts and pigmented bacteria differentiation. At the flowing distribution site, percentages of pigmented bacteria on SPC medium ranged from 2.3 to 9.67 times less than on m-SPC and from 2.3 to 9.86 times less than on R2A. At the same site, seasonal trends in the percentage of pigmented bacteria were the same for m-SPC and R2A media, and the highest and lowest percentages occurred in the fall and winter, respectively. At site 6, there appeared to be an inverse relationship between the yellow and orange pigmented groups, but upon analysis, this did not hold and all correlations between yellow and orange pigmented bacteria were positive. The study results indicate that pigmented bacteria could readily be detected by using plate counting media developed for heterotroph enumeration in potable waters with incubation periods of 7 days. Pigmented bacteria can be used as an additional marker for monitoring changes in water quality. High numbers of heterotrophs, including pigmented forms, were found at dead-end locations, usually in the absence of a free chlorine residual and when the water temperature was greater than 16 degrees C. The association of some pigmented bacteria with nosocomial and other infections raises concern that the organisms may have originated from the potable water supply. High levels of pigmented bacteria could pose an increased health risk to immunologically compromised individuals. Therefore, the bacterial quality of the distribution water should be controlled to prevent the development of high concentrations of heterotrophic plate count bacteria, including the pigmented forms.  相似文献   

15.
Genetic factors influence virtually every human disorder, determining disease susceptibility or resistance and interactions with environmental factors. Our recent successes in the genetic mapping and identification of the molecular basis of mendelian traits have been remarkable. Now, attention is rapidly shifting to more-complex, and more-prevalent, genetic disorders and traits that involve multiple genes and environmental effects, such as cardiovascular disease, diabetes, rheumatoid arthritis and schizophrenia. Rather than being due to specific and relatively rare mutations, complex diseases and traits result principally from genetic variation that is relatively common in the general population. Unfortunately, despite extensive efforts by many groups, only a few genetic regions and genes involved in complex diseases have been identified. Completion of the human genome sequence will be a seminal accomplishment, but it will not provide an immediate solution to the genetics of complex traits.  相似文献   

16.
A comprehensive analysis of published data indicates that arsenic exposure induces cardiovascular diseases, developmental abnormalities, neurologic and neurobehavioral disorders, diabetes, hearing loss, hematologic disorders, and various types of cancer. Although exposure may occur via the dermal, and parenteral routes, the main pathways of exposure include ingestion, and inhalation. The severity of adverse health effects is related to the chemical form of arsenic, and is also time- and dose-dependent. Recent reports have pointed out that arsenic poisoning appears to be one of the major public health problems of pandemic nature. Acute and chronic exposure to arsenic has been reported in several countries of the world where a large proportion of drinking water (groundwater) is contaminated with high concentrations of arsenic. Research has also pointed significantly higher standardized mortality rates for cancers of the bladder, kidney, skin, liver, and colon in many areas of arsenic pollution. There is therefore a great need for developing a comprehensive health risk assessment (RA) concept that should be used by public health officials and environmental managers for an effective management of the health effects associated with arsenic exposure. With a special emphasis on arsenic toxicity, mutagenesis, and carcinogenesis, this paper is aimed at using the National Academy of Science's RA framework as a guide, for developing a RA paradigm for arsenic based on a comprehensive analysis of the currently available scientific information on its physical and chemical properties, production and use, fate and transport, toxicokinetics, systemic and carcinogenic health effects, regulatory and health guidelines, analytical guidelines and treatment technologies.  相似文献   

17.
The occurrence of pigmented bacteria in potable water, from raw source water through treatment to distribution water, including dead-end locations, was compared at sample sites in a large municipal water system. Media used to enumerate heterotrophic bacteria and differentiate pigmented colonies were standard method plate count (SPC), m-SPC, and R2A agars, incubated up to 7 days at 35 degrees C. The predominant pigmented bacteria at most sample locations were yellow and orange, with a small incidence of pink organisms at the flowing distribution site. Seasonal variations were seen, with the yellow and orange organisms shifting in dominance. SPC agar was the least productive medium for both heterotroph counts and pigmented bacteria differentiation. At the flowing distribution site, percentages of pigmented bacteria on SPC medium ranged from 2.3 to 9.67 times less than on m-SPC and from 2.3 to 9.86 times less than on R2A. At the same site, seasonal trends in the percentage of pigmented bacteria were the same for m-SPC and R2A media, and the highest and lowest percentages occurred in the fall and winter, respectively. At site 6, there appeared to be an inverse relationship between the yellow and orange pigmented groups, but upon analysis, this did not hold and all correlations between yellow and orange pigmented bacteria were positive. The study results indicate that pigmented bacteria could readily be detected by using plate counting media developed for heterotroph enumeration in potable waters with incubation periods of 7 days. Pigmented bacteria can be used as an additional marker for monitoring changes in water quality. High numbers of heterotrophs, including pigmented forms, were found at dead-end locations, usually in the absence of a free chlorine residual and when the water temperature was greater than 16 degrees C. The association of some pigmented bacteria with nosocomial and other infections raises concern that the organisms may have originated from the potable water supply. High levels of pigmented bacteria could pose an increased health risk to immunologically compromised individuals. Therefore, the bacterial quality of the distribution water should be controlled to prevent the development of high concentrations of heterotrophic plate count bacteria, including the pigmented forms.  相似文献   

18.
Huntington's disease (HD) is an autosomal dominant disorder in which there is progressive neurodegeneration producing motor, cognitive and psychiatric symptoms. HD is caused by a trinucleotide (CAG) repeat mutation, encoding an expanded polyglutamine tract in the huntingtin protein. At least eight other neurodegenerative diseases are caused by CAG/glutamine repeat expansions in different genes. Recent evidence suggests that environmental factors can modify the onset and progression of Huntington's disease and possibly other neurodegenerative disorders. This review outlines possible molecular and cellular mechanisms mediating the polyglutamine-induced toxic 'gain of function' and associated gene-environment interactions in HD. Key aspects of pathogenesis shared with other neurodegenerative diseases may include abnormal protein-protein interactions, selective disruption of gene expression and 'pathological plasticity' of synapses in specific brain regions. Recent discoveries regarding molecular mechanisms of pathogenesis are guiding the development of new therapeutic approaches. Knowledge of gene-environment interactions, for example, could lead to development of 'enviromimetics' which mimic the beneficial effects of specific environmental stimuli. The effects of environmental enrichment on brain and behaviour will also be discussed, together with the general implications for neuroscience research involving animal models.  相似文献   

19.
Climate change is increasingly recognized as a major risk to human health, and health concerns are assuming more importance in international debates on mitigation and adaptation strategies. Health consequences of climate change will occur through direct and indirect routes, and as a result of interactions with other environmental exposures. Heatwaves will become more common and are associated with higher mortality particularly in the elderly and those with pre‐existing cardiovascular and respiratory illnesses. Warmer ambient temperatures will result in more dehydration episodes and increased risks of renal disease and, through effects on pollen seasons, there may be an increase in allergic disease such as asthma and hayfever. Other adverse effects including on air quality, food safety and security and an expanding distribution of some infectious diseases, including vector‐borne diseases, are postulated. A related but separate environmental exposure is that of ultraviolet radiation (UVR). Interactions between climate change and stratospheric ozone (and the causes of ozone depletion) will cause changes to levels of ambient UVR in the future and warmer temperatures are likely to change sun exposure behaviour. Co‐occurring effects on aquatic and terrestrial ecosystems have potential consequences for food safety, quality and supply. Climate change‐related exposures are likely to affect the incidence and distribution of diseases usually considered as caused by UVR exposure; and changes in UVR exposure will modulate the climate change effects on human health. For example, in some regions warmer temperatures due to climate change will encourage more outdoor behaviour, with likely consequences for increasing skin cancer incidence. Although many of the health outcomes of both climate change and the interaction of climate change and UVR exposure are somewhat speculative, there are risks to over‐ or under‐estimations of health risks if synergistic and antagonistic effects of co‐occurring environmental changes are not considered.  相似文献   

20.
Several studies demonstrate links between environmental stress and index of reduced health, including risk factors for cardiovascular disease, reduced immune function and cancer risks. We investigated the hypothesis that pollution, as an environmental stress, impacts health by modulating the rate of cellular aging in healthy pregnant women. Our research looked at the effects that illegal waste sites have on the localized population of pregnant women in Campania, Italy. As is often the case in illegal dumping, the effects on the population are often seen well before knowing what specific agents in the soil and water are responsible. Here we provide evidence that the pollution in this region is significantly associated with higher oxidative stress, shorter telomere length and lower telomerase activity, which are known determinants of cell senescence and aging-related meiotic dysfunction in women, in peripheral blood mononuclear cells from healthy pregnant women, subjected to therapeutic abortion in the second trimester of pregnancy. These findings may have implications for understanding how, at the cellular level, environmental stress may promote earlier onset of age-related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号