首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spindle checkpoint prevents anaphase onset until all the chromosomes have successfully attached to the spindle microtubules. The mechanisms by which unattached kinetochores trigger and transmit a primary signal are poorly understood, although it seems to be dependent at least in part, on the kinetochore localization of the different checkpoint components. By using protein immunodepletion and mRNA translation in Xenopus egg extracts, we have studied the hierarchic sequence and the interdependent network that governs protein recruitment at the kinetochore in the spindle checkpoint pathway. Our results show that the first regulatory step of this cascade is defined by Aurora B/INCENP complex. Aurora B/INCENP controls the activation of a second regulatory level by inducing at the kinetochore the localization of Mps1, Bub1, Bub3, and CENP-E. This localization, in turn, promotes the recruitment to the kinetochore of Mad1/Mad2, Cdc20, and the anaphase promoting complex (APC). Unlike Aurora B/INCENP, Mps1, Bub1, and CENP-E, the downstream checkpoint protein Mad1 does not regulate the kinetochore localization of either Cdc20 or APC. Similarly, Cdc20 and APC do not require each other to be localized at these chromosome structures. Thus, at the last step of the spindle checkpoint cascade, Mad1/Mad2, Cdc20, and APC are recruited at the kinetochores independently from each other.  相似文献   

2.
The spindle checkpoint ensures accurate chromosome segregation by sending a signal from an unattached kinetochore to inhibit anaphase onset. Numerous studies have described the role of Bub3 in checkpoint activation, but less is known about its functions apart from the spindle checkpoint. In this paper, we demonstrate that Bub3 has an unexpected role promoting metaphase progression in budding yeast. Loss of Bub3 resulted in a metaphase delay that was not a consequence of aneuploidy or the activation of a checkpoint. Instead, bub3Δ cells had impaired binding of the anaphase-promoting complex/cyclosome (APC/C) with its activator Cdc20, and the delay could be rescued by Cdc20 overexpression. Kinetochore localization of Bub3 was required for normal mitotic progression, and Bub3 and Cdc20 colocalized at the kinetochore. Although Bub1 binds Bub3 at the kinetochore, bub1Δ cells did not have compromised APC/C and Cdc20 binding. The results demonstrate that Bub3 has a previously unknown function at the kinetochore in activating APC/C-Cdc20 for normal mitotic progression.  相似文献   

3.
The spindle checkpoint delays the metaphase-to-anaphase transition in response to spindle and kinetochore defects. Genetic screens in budding yeast identified the Mad and Bub proteins as key components of this conserved regulatory pathway. Here we present the fission yeast homologue of Mad3p. Cells devoid of mad3(+) are unable to arrest their cell cycle in the presence of microtubule defects. Mad3p coimmunoprecipitates Bub3p, Mad2p, and the spindle checkpoint effector Slp1/Cdc20p. We demonstrate that Mad3p function is required for the overexpression of Mad2p to result in a metaphase arrest. Mad1p, Bub1p, and Bub3p are not required for this arrest. Thus, Mad3p appears to have a crucial role in transducing the inhibitory "wait anaphase" signal to the anaphase-promoting complex (APC). Mad3-green fluorescent protein (GFP) is recruited to unattached kinetochores early in mitosis and accumulates there upon prolonged checkpoint activation. For the first time, we have systematically studied the dependency of Mad3/BubR1 protein recruitment to kinetochores. We find Mad3-GFP kinetochore localization to be dependent upon Bub1p, Bub3p, and the Mph1p kinase, but not upon Mad1p or Mad2p. We discuss the implications of these findings in the context of our current understanding of spindle checkpoint function.  相似文献   

4.
Spindle checkpoint proteins monitor the interaction of the spindle apparatus with the kinetochores, halting anaphase even if the microtubule attachment of only a single chromosome is altered. In this study, we show that Bub3p of Saccharomyces cerevisiae, an evolutionarily conserved spindle checkpoint protein, exhibits distinct interactions with an altered or defective kinetochore(s). We show for the first time that green fluorescent protein-tagged S. cerevisiae Bub3p (Bub3-GFP) exhibits not only a diffuse nuclear localization pattern but also forms distinct nuclear foci in unperturbed growing and G(2)/M-arrested cells. As Bub3-GFP foci overlap only a subset of kinetochores, we tested a model in which alterations or defects in kinetochore or spindle integrity lead to the distinct enrichment of Bub3p at these structures. In support of our model, kinetochore-associated Bub3-GFP is enriched upon activation of the spindle checkpoint due to nocodazole-induced spindle disassembly, overexpression of the checkpoint kinase Mps1p, or the presence of a defective centromere (CEN). Most importantly, using a novel approach with the chromatin immunoprecipitation (ChIP) technique and genetically engineered defective CEN [CF/CEN6(Delta31)], we determined that Bub3-GFP can associate with a single defective kinetochore. Our studies represent the first comprehensive molecular analysis of spindle checkpoint protein function in the context of a wild-type or defective kinetochore(s) by use of live-cell imaging and the ChIP technique in S. cerevisiae.  相似文献   

5.
Cdc2p is a cyclin-dependent kinase (CDK) essential for both mitotic and meiotic cell cycle progression in fission yeast. We have found that the spindle checkpoint kinase Bub1p becomes phosphorylated by Cdc2p during spindle damage in mitotic cells. Cdc2p directly phosphorylates Bub1p in vitro at the CDK consensus sites. A Bub1p mutant that cannot be phosphorylated by Cdc2p is checkpoint defective, indicating that Cdc2p-dependent Bub1p phosphorylation is required to activate the checkpoint after spindle damage. The kinase activity of Bub1p is required, but is not sufficient, for complete spindle checkpoint function. The role of Bub1p in maintaining centromeric localization of Rec8p during meiosis I is entirely dependent upon its kinase activity, suggesting that Bub1p kinase activity is essential for establishing proper kinetochore function. Finally, we show that there is a Bub1p-dependent meiotic checkpoint, which is activated in recombination mutants.  相似文献   

6.
The anaphase promoting complex/cyclosome (APC/C) is crucial to the control of cell division (for a review, see ref. 1). It is a multi-subunit ubiquitin ligase that, at defined points during mitosis, targets specific proteins for proteasomal degradation. The APC/C is itself regulated by the spindle or kinetochore checkpoint, which has an important role in maintaining genomic stability by preventing sister chromatid separation until all chromosomes are correctly aligned on the mitotic spindle. The spindle checkpoint regulates the APC/C by inactivating Cdc20, an important co-activator of the APC/C. There is also evidence to indicate that the spindle checkpoint components and Cdc20 are spatially regulated by the mitotic apparatus, in particular they are recruited to improperly attached kinetochores. Here, we show that the APC/C itself co-localizes with components of the spindle checkpoint to improperly attached kinetochores. Indeed, we provide evidence that the spindle checkpoint machinery is required to recruit the APC/C to kinetochores. Our data indicate that the APC/C could be regulated directly by the spindle checkpoint.  相似文献   

7.
Tang Z  Shu H  Oncel D  Chen S  Yu H 《Molecular cell》2004,16(3):387-397
To ensure the fidelity of chromosome segregation, the spindle checkpoint blocks the ubiquitin ligase activity of APC/C(Cdc20) in response to a single chromatid not properly attached to the mitotic spindle. Here we show that HeLa cells depleted for Bub1 by RNA interference are defective in checkpoint signaling. Bub1 directly phosphorylates Cdc20 in vitro and inhibits the ubiquitin ligase activity of APC/C(Cdc20) catalytically. A Cdc20 mutant with all six Bub1 phosphorylation sites removed is refractory to Bub1-mediated phosphorylation and inhibition in vitro. Upon checkpoint activation, Bub1 itself is hyperphosphorylated and its kinase activity toward Cdc20 is stimulated. Ectopic expression of the nonphosphorylatable Cdc20 mutant allows HeLa cells to escape from mitosis in the presence of spindle damage. Therefore, Bub1-mediated phosphorylation of Cdc20 is required for proper checkpoint signaling. We speculate that inhibition of APC/C(Cdc20) by Bub1 in a catalytic fashion may partly account for the exquisite sensitivity of the spindle checkpoint.  相似文献   

8.
Sister chromatid separation creates a sudden loss of tension on kinetochores, which could, in principle, re-activate the spindle checkpoint in anaphase. This so-called “anaphase problem” is probably avoided by timely inactivation of cyclin B1-Cdk1, which may prevent the spindle tension sensing Aurora B kinase from destabilizing kinetochore–microtubule interactions as they lose tension in anaphase. However, exactly how spindle checkpoint re-activation is prevented remains unclear.

Here, we investigated how different degrees of cyclin B1 stabilization affected the spindle checkpoint in metaphase and anaphase. Cells expressing a strongly stabilized (R42A) mutant of cyclin B1 degraded APC/CCdc20 substrates normally, showing that checkpoint release was not inhibited by high cyclin B1-Cdk1 activity. However, after this initial wave of APC/CCdc20 activity, the spindle checkpoint returned in cells with uncohesed sister chromatids. Expression of a lysine mutant of cyclin B1 that is degraded only slightly inefficiently allowed a normal metaphase-to-anaphase transition. Strikingly, however, the spindle checkpoint returned in cells that had not degraded the cyclin B1 mutant 10–15 min after anaphase onset. When cyclin B1 remained in late anaphase, cytokinesis stalled, and translocation of INCENP from separated sister chromatids to the spindle midzone was blocked. This late anaphase arrest required the activity of Aurora B and Mps1. In conclusion, our results reveal that complete removal of cyclin B1 is essential to prevent the return of the spindle checkpoint following sister chromatid disjunction. Speculatively, increasing activity of APC/CCdc20 in late anaphase helps to keep cyclin B1 levels low.  相似文献   


9.
In mitosis, the spindle checkpoint detects a single unattached kinetochore, inhibits the anaphase-promoting complex or cyclosome (APC/C), and prevents premature sister chromatid separation. The checkpoint kinase Bub1 contributes to checkpoint sensitivity through phosphorylating the APC/C activator, Cdc20, and inhibiting APC/C catalytically. We report here the crystal structure of the kinase domain of Bub1, revealing the requirement of an N-terminal extension for its kinase activity. Though the activation segment of Bub1 is ordered and has structural features indicative of active kinases, the C-terminal portion of this segment sterically restricts substrate access to the active site. Bub1 uses docking motifs, so-called KEN boxes, outside its kinase domain to recruit Cdc20, one of two known KEN box receptors. The KEN boxes of Bub1 are required for the spindle checkpoint in human cells. Therefore, its unusual active-site conformation and mode of substrate recruitment suggest that Bub1 has an exquisitely tuned specificity for Cdc20.  相似文献   

10.
The metaphase-to-anaphase transition is triggered by the Anaphase-Promoting Complex (APC), an E3 ubiquitin ligase that targets proteins for degradation, leading to sister chromatid separation and mitotic exit. The function of APC is controlled by the spindle checkpoint that delays anaphase onset in the presence of any chromosome that has not established bipolar attachment to the mitotic spindle. In this way, the checkpoint ensures accurate chromosome segregation. The spindle checkpoint is mostly activated from kinetochores that are not attached to microtubules or not under tension that is normally generated from bipolar attachment. These kinetochores recruit several spindle checkpoint proteins to assemble an inhibitory complex composed of checkpoint proteins Mad2, Bub3, and Mad3/BubR1. This complex binds and inhibits Cdc20, an activator and substrate adaptor for APC. In addition, the checkpoint complex promotes Cdc20 degradation, thus lowering Cdc20 protein level upon checkpoint activation. This dual inhibition on Cdc20 likely ensures that the spindle checkpoint is sustained even when the cell contains only a single unattached kinetochore.  相似文献   

11.
The spindle checkpoint senses unattached or improperly attached kinetochores during mitosis, inhibits the anaphase-promoting complex or cyclosome (APC/C), and delays anaphase onset to prevent aneuploidy. The mitotic checkpoint complex (MCC) consisting of BubR1, Bub3, Mad2, and Cdc20 is a critical APC/C-inhibitory checkpoint complex in human cells. At the metaphase-anaphase transition, the spindle checkpoint turns off, and MCC disassembles to allow anaphase onset. The molecular mechanisms of checkpoint inactivation are poorly understood. A major unresolved issue is the role of Cdc20 autoubiquitination in this process. Although Cdc20 autoubiquitination can promote Mad2 dissociation from Cdc20, a nonubiquitinatable Cdc20 mutant still dissociates from Mad2 during checkpoint inactivation. Here, we show that depletion of p31(comet) delays Mad2 dissociation from Cdc20 mutants that cannot undergo autoubiquitination. Thus both p31(comet) and ubiquitination of Cdc20 are critical mechanisms of checkpoint inactivation. They act redundantly to promote Mad2 dissociation from Cdc20.  相似文献   

12.
During the G1/S transition, p21 proteolysis is mediated by Skp2; however, p21 reaccumulates in G2 and is degraded again in prometaphase. How p21 degradation is controlled in mitosis remains unexplored. We found that Cdc20 (an activator of the ubiquitin ligase APC/C) binds p21 in cultured cells and identified a D box motif in p21 necessary for APC/C(Cdc20)-mediated ubiquitylation of p21. Overexpression of Cdc20 or Skp2 destabilized wild-type p21; however, only Skp2, but not Cdc20, was able to destabilize a p21(D box) mutant. Silencing of Cdc20 induced an accumulation of p21, increased the fraction of p21 bound to Cdk1, and inhibited Cdk1 activity in p21(+/+) prometaphase cells, but not in p21(-/-) cells. Thus, in prometaphase Cdc20 positively regulates Cdk1 by mediating the degradation of p21. We propose that the APC/C(Cdc20)-mediated degradation of p21 contributes to the full activation of Cdk1 necessary for mitotic events and prevents mitotic slippage during spindle checkpoint activation.  相似文献   

13.
The mitotic arrest deficiency 2 (Mad2) protein is an essential component of the spindle assembly checkpoint that interacts with Cdc20/Slp1 and inhibit its ability to activate anaphase promoting complex/cyclosome (APC/C). In bladder cancer cell line the C-terminal residue of the mad2 gene has been found to be deleted. In this study we tried to understand the role of the C-terminal region of mad2 on the spindle checkpoint function. To envisage the role of C-terminal region of Mad2, we truncated 25 residues of Mad2 C-terminal region in fission yeast S.pombe and characterized its effect on spindle assembly checkpoint function. The cells containing C-terminal truncation of Mad2 exhibit sensitivity towards microtubule destabilizing agent suggesting perturbation of spindle assembly checkpoint. Further, the C-terminal truncation of Mad2 exhibit reduced viability in the nda3-KM311 mutant background at non-permissive temperature. Truncation in mad2 gene also affects its foci forming ability at unattached kinetochore suggesting that the mad2-?CT mutant is unable to maintain spindle checkpoint activation. However, in response to the defective microtubule, only brief delay of mitotic progression was observed in Mad2 C-terminal truncation mutant. In addition we have shown that the deletion of two β strands of Mad2 protein abolishes its ability to interact with APC activator protein Slp1/Cdc20. We purpose that the truncation of two β strands (β7 and β8) of Mad2 destabilize the safety belt and affect the Cdc20-Mad2 interaction leading to defects in the spindle checkpoint activation.  相似文献   

14.
Mad2 participates in spindle checkpoint inhibition of APC(Cdc20). We show that RNAi-mediated suppression of Mad1 function in mammalian cells causes loss of Mad2 kinetochore localization and impairment of the spindle checkpoint. Mad1 and Cdc20 contain Mad2 binding motifs that share a common consensus. We have identified a class of Mad2 binding peptides with a similar consensus. Binding of one of these ligands, MBP1, triggers an extensive rearrangement of the tertiary structure of Mad2. Mad2 also undergoes a similar striking structural change upon binding to a Mad1 or Cdc20 binding motif peptide. Our data suggest that, upon checkpoint activation, Mad1 recruits Mad2 to unattached kinetochores and may promote binding of Mad2 to Cdc20.  相似文献   

15.
Mitotic progression is controlled by proteolytic destruction of securin and cyclin. The mitotic E3 ubiquitin ligase, known as the anaphase promoting complex or cyclosome (APC/C), in partnership with its activators Cdc20p and Cdh1p, targets these proteins for degradation. In the presence of defective kinetochore-microtubule interactions, APC/C(Cdc20) is inhibited by the spindle checkpoint, thereby delaying anaphase onset and providing more time for spindle assembly. Cdc20p interacts directly with Mad2p, and its levels are subject to careful regulation, but the precise mode(s) of APC/C( Cdc20) inhibition remain unclear. The mitotic checkpoint complex (MCC, consisting of Mad3p, Mad2p, Bub3p and Cdc20p in budding yeast) is a potent APC/C inhibitor. Here we focus on Mad3p and how it acts, in concert with Mad2p, to efficiently inhibit Cdc20p. We identify and analyse the function of two motifs in Mad3p, KEN30 and KEN296, which are conserved from yeast Mad3p to human BubR1. These KEN amino acid sequences resemble 'degron' signals that confer interaction with APC/C activators and target proteins for degradation. We show that both Mad3p KEN boxes are necessary for spindle checkpoint function. Mutation of KEN30 abolished MCC formation and stabilised Cdc20p in mitosis. In addition, mutation of Mad3-KEN30, APC/C subunits, or Cdh1p, stabilised Mad3p in G1, indicating that the N-terminal KEN box could be a Mad3p degron. To determine the significance of Mad3p turnover, we analysed the consequences of MAD3 overexpression and found that four-fold overproduction of Mad3p led to chromosome bi-orientation defects and significant chromosome loss during recovery from anti-microtubule drug induced checkpoint arrest. In conclusion, Mad3p KEN30 mediates interactions that regulate the proteolytic turnover of Cdc20p and Mad3p, and the levels of both of these proteins are critical for spindle checkpoint signaling and high fidelity chromosome segregation.  相似文献   

16.
BACKGROUND: To test current models for how unattached and untense kinetochores prevent Cdc20 activation of the anaphase-promoting complex/cyclosome (APC/C) throughout the spindle and the cytoplasm, we used GFP fusions and live-cell imaging to quantify the abundance and dynamics of spindle checkpoint proteins Mad1, Mad2, Bub1, BubR1, Mps1, and Cdc20 at kinetochores during mitosis in living PtK2 cells. RESULTS: Unattached kinetochores in prometaphase bound on average only a small fraction (estimated at 500-5000 molecules) of the total cellular pool of each spindle checkpoint protein. Measurements of fluorescence recovery after photobleaching (FRAP) showed that GFP-Cdc20 and GFP-BubR1 exhibit biphasic exponential kinetics at unattached kinetochores, with approximately 50% displaying very fast kinetics (t1/2 of approximately 1-3 s) and approximately 50% displaying slower kinetics similar to the single exponential kinetics of GFP-Mad2 and GFP-Bub3 (t1/2 of 21-23 s). The slower phase of GFP-Cdc20 likely represents complex formation with Mad2 since it was tension insensitive and, unlike the fast phase, it was absent at metaphase kinetochores that lack Mad2 but retain Cdc20 and was absent at unattached prometaphase kinetochores for the Cdc20 derivative GFP-Cdc20delta1-167, which lacks the major Mad2 binding domain but retains kinetochore localization. GFP-Mps1 exhibited single exponential kinetics at unattached kinetochores with a t1/2 of approximately 10 s, whereas most GFP-Mad1 and GFP-Bub1 were much more stable components. CONCLUSIONS: Our data support catalytic models of checkpoint activation where Mad1 and Bub1 are mainly resident, Mad2 free of Mad1, BubR1 and Bub3 free of Bub1, Cdc20, and Mps1 dynamically exchange as part of the diffuse wait-anaphase signal; and Mad2 interacts with Cdc20 at unattached kinetochores.  相似文献   

17.
Successful mitosis requires the right protein be degraded at the right time. Central to this is the spindle checkpoint that prevents the destruction of securin and cyclin B1 when there are improperly attached chromosomes. The principal target of the checkpoint is Cdc20, which activates the anaphase-promoting complex/cyclosome (APC/C). A Drosophila Cdc20/fizzy mutant arrests in mitosis with high levels of cyclins A and B, but paradoxically the spindle checkpoint does not stabilize cyclin A. Here, we investigated this paradox and found that Cdc20 is rate limiting for cyclin A destruction. Indeed, Cdc20 binds efficiently to cyclin A before and in mitosis, and this complex has little associated Mad2. Furthermore, the cyclin A complex must bind to a Cks protein to be degraded independently of the checkpoint. Thus, we identify a crucial role for the Cks proteins in mitosis and one mechanism by which the APC/C can target substrates independently of the spindle checkpoint.  相似文献   

18.
Saccharomyces cerevisiae, like most eucaryotic cells, can prevent the onset of anaphase until chromosomes are properly aligned on the mitotic spindle. We determined that Cdc55p (regulatory B subunit of protein phosphatase 2A [PP2A]) is required for the kinetochore/spindle checkpoint regulatory pathway in yeast. ctf13 cdc55 double mutants could not maintain a ctf13-induced mitotic delay, as determined by antitubulin staining and levels of histone H1 kinase activity. In addition, cdc55::LEU2 mutants and tpd3::LEU2 mutants (regulatory A subunit of PP2A) were nocodazole sensitive and exhibited the phenotypes of previously identified kinetochore/spindle checkpoint mutants. Inactivating CDC55 did not simply bypass the arrest that results from inhibiting ubiquitin-dependent proteolysis because cdc16-1 cdc55::LEU2 and cdc23-1 cdc55::LEU2 double mutants arrested normally at elevated temperatures. CDC55 is specific for the kinetochore/spindle checkpoint because cdc55 mutants showed normal sensitivity to gamma radiation and hydroxyurea. The conditional lethality and the abnormal cellular morphogenesis of cdc55::LEU2 were suppressed by cdc28F19, suggesting that the cdc55 phenotypes are dependent on the phosphorylation state of Cdc28p. In contrast, the nocodazole sensitivity of cdc55::LEU2 was not suppressed by cdc28F19. Therefore, the mitotic checkpoint activity of CDC55 (and TPD3) is independent of regulated phosphorylation of Cdc28p. Finally, cdc55::LEU2 suppresses the temperature sensitivity of cdc20-1, suggesting additional roles for CDC55 in mitosis.  相似文献   

19.
Cdc20 is a substrate adaptor and activator of the anaphase-promoting complex/cyclosome (APC/C), the E3 ubiquitin ligase whose activity is required for anaphase onset and exit from mitosis. A green fluorescent protein derivative, Cdc20-GFP, bound to centrosomes throughout the cell cycle and to kinetochores from late prophase to late telophase. We mapped distinct domains of Cdc20 that are required for association with kinetochores and centrosomes. FRAP measurements revealed extremely rapid dynamics at the kinetochores (t1/2 = 5.1 s) and spindle poles (t1/2 = 4.7 s). This rapid turnover is independent of microtubules. Rapid transit of Cdc20 through kinetochores may ensure that spindle checkpoint signaling at unattached/relaxed kinetochores can continuously inhibit APC/CCdc20 targeting of anaphase inhibitors (securins) throughout the cell until all the chromosomes are properly attached to the mitotic spindle.  相似文献   

20.
The Cdc14p-like phosphatase Flp1p (also known as Clp1p) is regulated by cell cycle-dependent changes in its subcellular localization. Flp1p is restricted to the nucleolus and spindle pole body until prophase, when it is dispersed throughout the nucleus, mitotic spindle, and medial ring. Once released, Flp1p antagonizes Cdc2p/cyclin activity by reverting Cdc2p-phosphorylation sites on Cdc25p. On replication stress, ataxia-telangiectasia mutated/ATM/Rad3-related kinase Rad3p activates Cds1p, which phosphorylates key proteins ensuring the stability of stalled DNA replication forks. Here, we show that replication stress induces changes in the subcellular localization of Flp1p in a checkpoint-dependent manner. Active Cds1p checkpoint kinase is required to release Flp1p into the nucleus. Consistently, a Flp1p mutant (flp1-9A) lacking all potential Cds1p phosphorylation sites fails to relocate in response to replication blocks and, similarly to cells lacking flp1 (Deltaflp1), presents defects in checkpoint response to replication stress. Deltaflp1 cells accumulate reduced levels of a less active Cds1p kinase in hydroxyurea (HU), indicating that nuclear Flp1p regulates Cds1p full activation. Consistently, Deltaflp1 and flp1-9A have an increased percentage of Rad22p-recombination foci during HU treatment. Together, our data show that by releasing Flp1p into the nucleus Cds1p checkpoint kinase modulates its own full activation during replication stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号