首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a previous study (22) we found that transient exposure of C3H 10T1/2 mouse embryo fibroblasts to 5-azacytidine (5-azaC) induced several changes in growth properties. The treated cells showed progressive changes in morphology, saturation density, growth rate, and serum dependence. By passage 5, the cells had acquired the ability to grow in 0.3% agarose, and by passage 30, they had given rise to fully transformed foci that grew in agarose, agar, and liquid suspension. This progression was rapidly accelerated if the cultures derived from 5-azaC-treated cells were exposed for 48 h to the carcinogen benzo[a]pyrene. The present studies demonstrate that both type C and type A, but not type B, retrovirus-related sequences were expressed in the 5-azaC-treated cells. There was negligible expression of these sequences in the control 10T1/2 cells. The level of expression of the related RNAs tended to correlate with loss of anchorage dependence and other markers of an increase in the transformed phenotype. These changes were associated with hypomethylation of the corresponding cellular DNA sequences, as revealed by differential digestion with the restriction enzymes HpaII and MspI. These studies provide evidence that aberrations in DNA methylation and induction of expression of certain endogenous retroviruses may be one of a series of critical events during the course of multistage carcinogenesis, thus enhancing the evolution of malignant tumor cells.  相似文献   

2.
Mesenchymal stem cells (MSCs) are considered to be one of the most promising therapeutic cell sources as they encompass a plasticity of multiple cell lineages. The challenge in using these cells lies in developing well-defined protocols for directing cellular differentiation to generate a desired lineage. In this study, we investigated the effect of 5-azacytidine, a DNA demethylating agent, on osteogenic differentiation of MSCs. The cells were exposed to 5-azacytidine in culture medium for 24 h prior to osteogenic induction. Osteogenic differentiation was determined by several the appearance of a number of osteogenesis characteristics, including gene expression, ALP activity, and calcium mineralization. Pretreatment of MSCs with 5-azacytidine significantly facilitated osteogenic differentiation and was accompanied by hypomethylation of genomic DNA and increased osteogenic gene expression. Taking dlx5 as a representative, methylation alterations of the “CpG island shore” in the promoter caused by 5-azacytidine appeared to contribute to osteogenic differentiation.  相似文献   

3.
The permanent cell line BHK-21/cl 13 can be transformed by mutagenic carcinogens as the result of the induction of a recessive somatic mutation. Yet when these cells were treated with 5-azacytidine under conditions in which no mutants resistant to either ouabain or 6-thioguanine could be detected, they were transformed efficiently. These transformants were induced, not selected. 6-Azacytidine was ineffective at transforming BHK cells; 2'-deoxy-5-azacytidine was exceptionally effective. When tested by cell fusion, transformants induced by 5-azacytidine fell into the same complementation group as those induced by highly mutagenic carcinogens, but they were phenotypically distinct in that they were unstable during prolonged passage and rarely displayed the temperature-limited phenotypes so common among BHK transformants induced by strongly mutagenic carcinogens. These results raise the possibility that a cell can be induced by either genetic or epigenetic means to traverse the same single step in carcinogenesis.  相似文献   

4.
Zhang DZ  Gai LY  Liu HW 《生理学报》2008,60(3):341-347
本文旨在探讨脂肪干细胞(adipose-derived stem cells, ASCs)和骨髓间充质干细胞(mesenchymal stem cells, MSCs)在组织含量、体外培养和诱导分化为心肌细胞方面的差别.ASCs从新西兰白兔皮下脂肪组织提取,MSCs从大鼠四肢长骨骨髓提取,体外培养扩增,免疫细胞学方法鉴定.采用细胞集落形成法检测组织中干细胞的含量.将不同代的干细胞用不同浓度的5-氮胞苷诱导,观察其形态变化,免疫细胞化学方法检测诱导后细胞是否转化为心肌细胞.结果显示,体外培养的ASCs呈短梭形,分布均匀,生长迅速,细胞形态单一、稳定.MSCs原代生长非常缓慢,呈簇生长,细胞纯度偏低,容易混杂其它细胞类型,传代细胞容易分化和老化.脂肪组织中ASCs含量显著高于骨髓中MSCs含量,且前者含量受年龄影响小.5-氮胞苷诱导ASCs分化为心肌细胞的有效浓度为6~9μmol/L,而MSCs在3~15μmol/L 5-氮胞苷诱导下可见心肌细胞形成.ASCs诱导分化的心肌细胞呈球形细胞团,MSCs分化的心肌细胞呈条形或棒状,其心肌细胞分化率低于ASCs.幼年动物MSCs的组织含量和心肌细胞分化率均高于老年动物,而ASCs受动物年龄影响较小.结果表明,ASCs在组织含量、细胞纯度、生长速度和心肌细胞分化率等方面均明显优于骨髓MSCs,在心肌细胞再生方面较MSCs具有更大的优势.  相似文献   

5.
Previously, mouse bone marrow-derived stem cells (MSC) treated with the unspecific DNA methyltransferase inhibitor 5-azacytidine were reported to differentiate into cardiomyocytes. The aim of the present study was to investigate the efficiency of a similar differentiation strategy in human mononuclear cells obtained from healthy bone marrow donors. After 1-3 passages, cultures were exposed for 24 h to 5-azacytidine (3 μM) followed by 6 weeks of further culture. Drug treatment did not induce expression of myogenic marker MyoD or cardiac markers Nkx2.5 and GATA-4 and did not yield beating cells during follow-up. In patch clamp experiments, approximately 10-15% of treated and untreated cells exhibited L-type Ca^2+ currents. Almost all cells showed outwardly rectifying K^+ currents of rapid or slow activation kinetics. Mean current amplitude at +60 mV doubled after 6 weeks of treatment compared with time-matched controls. Membrane capacitance of treated cells was significantly larger than in controls 2 weeks after treatment and remained high after 6 weeks, Expression levels of mRNAs for the K^+ channels Kv 1,1, Kv 1,5, Kv2,1, Kv4,3 and KCNMA 1 and for the Ca^2+ channel Cav 1.2 were not affected by 5-azacytidine. Treatment with potassium channel blockers tetraethylammonium and clofilium at concentrations shown previously to inhibit rapid or slowly activating K^+ currents of hMSC inhibited proliferation of these cells. Our results suggest that despite the absence of differentiation ofhMSC into cardiomyocytes, treatme.nt with 5-azacytidine caused profound changes in current density.  相似文献   

6.
Summary The replication of simian virus 40 DNA and protein synthesis in BSC-1 cells was analyzed in vitro after treatment with 5,6-dihydro-5-azacytidine (DH-5-AzaCR) or 5-azacytidine (5-AzaCR). Results demonstrated that after a 3-h treatment period with 100 μg/ml, DH-5-AzaCR exhibited a 77% inhibition of viral DNA synthesis, whereas 5-AzaCR resulted in a 50% inhibition. Stimulation of DNA synthesis occurred when infected cultures were treated with low doses (0.1 to 0.5 μg/ml) of 5-AzaCR for 3h and after 1 and 2 h of treatment with 100 μg/ml of 5-AzaCR; however, stimulation did not occur with DH-5-AzaCR. DNA synthesized in the presence of either drug demonstrated altered conformations when analyzed on agarose gels; however this alteration was negligible after DH-5-AzaCR treatment, but more pronounced in the presence of 5-AzaCR. Restriction enzyme analysis suggests that DH-5-AzaCR may not be a hypomethylating agent as is 5-AzaCR. Inhibition of total protein synthesis (cellular and viral) was essentially complete 6 h after treatment with DH-5-AzaCR, whereas 5-AzaCR completely inhibited protein synthesis after 3 h. These data indicate that 5-AzaCR does not exhibit a direct dose relationship to the inhibition of DNA synthesis whereas DH-5-AzaCR may show some dose relationship, and that DH-5-AzaCR is a more potent inhibitor of DNA synthesis as compared to 5-AzaCR. This work was supported by grant RR08005, National Institutes of Health, Bethesda, MD. Presented in part before the 87th Annual Meeting of the American Society for Microbiology, Atlanta, GA. April 1–6, 1987.  相似文献   

7.
This study reports that changing the oxygen concentration within a physiologic range has a striking effect on myogenesis induced by the cytidine analog 5-azacytidine. Reducing oxygen from 20% to 2.5% increases 7-fold the number of myocytes that appear in cultures of C3H/10T1/2 mouse embryo cells 10 days after they receive a 24-h exposure to 5-azacytidine. Reducing oxygen does not alter the extent to which a 24-h exposure to 5-azacytidine inhibits cytosine methylation in newly synthesized DNA. Instead, the oxygen-sensitive step in myogenesis occurs after 5-azacytidine is removed from the culture medium. Reducing oxygen increases the rate of logarithmic growth in C3H/10T1/2 cultures after 5-azacytidine exposure, suggesting that survival and proliferation of myocyte stem cells (morphologically indistinguishable from uncommitted C3H/10T1/2 cells) may be the oxygen-sensitive steps in myogenesis.  相似文献   

8.
Abstract. To analyse the putative role of methylation of cytosine residues in the nuclear DNA as a regulatory step during cellular ageing, we incubated ageing human amniotic fluid derived fibroblast-like cells and non-ageing NIH-3T3 cells with 5-azacytidine. BrdUrd/Hoechst and acridine orange (AO) flow cytometry was used to compare the effects of the base analogue on cell proliferation and cell differentiation. In NIH-3T3 cultures, 96 h exposures to 4 μM 5-azacytidine caused diminished cell proliferation due to cell arrest in the G1 compartments of the second and third cell cycles of serum stimulated cells. The exit from the G0/G1 compartment was not affected. The 5-azacytidine induced cell kinetic disturbances were unstable in NIH-3T3 cultures, such that pre-treated cells reverted to normal cell cycle transit within 2–3 days after termination of treatment. In contrast, 5-azacytidine pre-treated amniotic fluid derived fibroblast-like cell cultures showed persistently elevated G2 phase arrests and delayed G0/G1 phase exit kinetics, which explain the premature cessation of proliferation observed in these primary cultures. In both cell systems, 5-azacytidine exposed cultures showed elevated numbers of G1 phase cells with increased RNA content as revealed by AO flow cytometry. Again, this effect was reversible in NIH-3T3 cells but not in amniotic fluid derived fibroblast-like cells. These contrasting responses to 5-azacytidine are likely to reflect intrinsic differences in methylation patterns or de novo methylase activity between ageing cell strains and non-ageing cell lines.  相似文献   

9.
Removal of the somatic DNA methylation pattern from donor cells and remodeling of embryonic status have been suggested as integral processes for successful nuclear transfer (NT) reprogramming. This study has investigated the effects of 5-azacytidine (5-azaC), a DNA methylation inhibitor, on global methylation changes in porcine fetal fibroblasts (PFF); this may improve NT attributable to the potential reprogramming of the methyl groups. PFF in 5th passage cultures were treated with 0, 0.5, 1.0, 2.0, and 3.0 μM 5-azaC for 96 h; 5-azaC inhibited the growth at all tested concentrations. At the higher concentrations of 5-azaC used, cells appeared to exhibit morphological changes and to become apoptotic as observed by TUNEL assay. Thus, cells were negatively affected by 5-azaC. Differences in cellular ploidy were also observed at higher concentrations. Analysis showed no considerable changes in the proportion of cells at the G1-phase of the cell cycle with 5-azaC concentrations. The fractional part of the methylated DNA of these cells was significantly reduced by 5-azaC treatment. Confocal microscopy confirmed the inhibition of methylation levels in PFF with increased concentrations of 5-azaC. Exposure to 5-azaC altered the expression of genes involved in imprinting (IGF2) or pro-apoptosis (BAX), whereas there was a reduction in the expression of the main enzyme responsible for replicating the DNA methylation pattern (DNMT1) and anti-apoptosis (BCL2L1). Therefore, 5-azaC induces a relative reduction in methylation in PFF, and cells treated with 0.5 μM 5-azaC may have enhanced potential for porcine NT.The financial support of BioGreen 21 (grant no. 100052004002000) and KOSEF (grant no. R05-2004-000-10702-0) in Korea is gratefully acknowledged.  相似文献   

10.
Lysyl oxidase (LO) is synthesized intracellularly as a proenzyme that is secreted and then processed extracellularly to a mature form. LO is expressed in NIH3T3 cells, but only very low levels are observed after NIH 3T3 is transformed by c-H-ras or one of several other oncogenes. LO functions as a tumor suppressor. Treatment of ras-transformed cells with interferon-alpha with or without retinoic acid results in their persistent reversion to a non-transformed state that is dependent on the restoration of LO expression. When such revertant cells are treated with 5-azacytidine (5-azaC), they undergo rapid morphological retransformation. Within one passage after addition of 5-azaC, there was a down regulation of LO mRNA and proenzyme protein. These data suggest a direct relationship between the transformed state and LO expression.  相似文献   

11.
Bone marrow multipotent stromal cells (BMSCs) have the ability to transdifferentiate into various cell types, including: osteoblasts, chondrocytes, adipocytes, neurons, and cardiomyocytes. This study aimed to differentiate the BMSCs into cardiomyocyte. BMSCs were exposed to 5-azacytidine for 24 h. Seven days after the induction of cell differentiation by 5-azacytidine, the cardiomyogenic cells were stained by fushin and binucleated cells were counted and compared with the neonate cardiomyocyte as positive control. In addition, immunofluorescence analysis and western blot were performed using the antibodies against α-actinin, desmin, troponin T, and β-myosin heavy chain. Our results showed that there was no significant difference between the number of binucleated cells within the cardiomyogenic cell group and positive control group; however, a statistically significant difference was observed between both of these groups and undifferentiated cell group (P < 0.005). In addition, after 5-azacytidine treatment, BMSCs had a higher expression of cardiac-specific markers such as desmin, α-actinin, troponin T and β-myosin heavy chain compared with the untreated groups (P < 0.005). We concluded that 5-azacytidine is an effective inducer for the differentiation of BMSCs into cardiomyocytes and could produce a population of binucleated cells, which express α-actinin, desmin, troponin T, and β-myosin heavy chain, four markers of cardiomyocytes.  相似文献   

12.
Genotoxicity of 5-azacytidine in somatic cells of Drosophila   总被引:1,自引:0,他引:1  
A J Katz 《Mutation research》1985,143(3):195-199
The newly developed somatic mutation and recombination test, utilizing the wing-hair mutations mwh and flr3, was used to evaluate the genotoxicity of the base analog 5-azacytidine in larvae of Drosophila melanogaster. Third instar larvae were fed media wetted with various concentrations of the compound, and wings of surviving adults were removed and scored for the presence of clones of cells possessing malformed hairs. Wings of exposed flies trans-dihybrid for mwh and flr3 had significantly increased frequencies of twin spots, small single spots and large single spots. Significant linear regression of twin-spot frequencies upon concentration was also obtained. Induction of twin spots by 5-azacytidine unambiguously demonstrates its recombinogenic activity in somatic cells of Drosophila. Significantly increased frequencies of large single spots on wings of inversion-heterozygous flies were also observed and suggest that 5-azacytidine may also be inducing somatic gene mutations (or deletions).  相似文献   

13.
Treatment of Friend erythroleukemia cells with the antileukemic drugs 5-azacytidine and 5-aza-2'-deoxycytidine leads to rapid, time-dependent, and dose-dependent decrease of DNA methyltransferase activity and synthesis of markedly undermethylated DNA. Since this DNA is at least partially methylated in vivo and serves as an excellent substrate for methylation in vitro, hypomethylation of DNA in analog-treated cells appears to result from the loss of DNA methyltransferase, rather than from an inherent inability of 5-azacytosine- substituted DNA to serve as a methyl acceptor. Inhibition of DNA synthesis blocks the loss of DNA methyltransferase activity while inhibitors of RNA synthesis do not, suggesting that the analogs must be incorporated into DNA to mediate their effect on the enzyme, and that minor substitution of 5-azacytosine for cytosine in DNA (approximately 0.3%) suffices to inactivate more than 95% of the enzyme in the cell. Several lines of evidence link changes in the pattern of DNA modification with differentiation. In this regard, it is significant that 5-azacytidine and 5-aza-2'-deoxycytidine act as weak inducers of erythroid differentiation of Friend erythroleukemia cells in the same concentration range where they affect DNA methyltransferase activity. For differentiation to proceed, the cells must be washed free of the drugs. Less than 24 h later, normal levels of DNA methyltransferase activity are restored and within 48 h, DNA isolated from the cells is not detectably undermethylated. This may in part explain why 5-azacytidine and 5-aza-2'-deoxycytidine induce differentiation in less than 15% of the population despite their initial profound effect on DNA methylation.  相似文献   

14.
Salt-adapted and control cells of the cultivated potato, Solanum tuberosum cultivar Russet Burbank, untreated or treated with 5-azacytidine (an inhibitor of DNA methylation), were compared with respect to: a) % of cytosine methylation in total nuclear DNA, as determined by HPLC; b) fresh and dry weight. Adapted and control cells were compared also with respect to % of cytosine methylation in DNA, which was purified from DNaseI-partially-digested chromatin and size fractionated by electrophoresis in agarose gels. The growth (represented by dry weight) of the NaCl-adapted cells in saline medium lacking 5-azacytidine was similar to that of control cells in standard medium. The adaptation of the cells was correlated with some increase (+16%) of methylation in total DNA and with a much greater increase in the lower molecular weight DNA fractions which were obtained from the presumably more active chromatin. As expected, the treatment of the cells with the methylation inhibitor induced a decrease in the level of methylation. The decrease of methylation, however, was much greater in the adapted cells, whose dry weight, unlike in the control, was not affected by this treatment.Abbreviations 5-azaCyt 5-azacytidine - C cytidine - 2,4-D 2,4 dichlorophenoxyacetic acid - DW dry weight - EDTA ethylenediaminetetraacetic acid - FW fresh weight - HPLC high performance liquid chromatography - m5Cyt 5 methyl cytidine - RB Russet Burbank - SDS sodium dodecyl sulfate - TE 10 mM Tris and 1 mM EDTA - Tris Tris [hydroxymethyl] aminomethane  相似文献   

15.
Ciliate encystment is an eukaryotic cell differentiation process which involves a specific gene expression, to form the resting stage. In this study, we investigate, for first time, the DNA methylation pattern changes during encystment in the ciliate Colpoda inflata, and the 5-azacytidine effect on growing cells and encystment. Results indicate that 5-methylcytosine is present in macronuclear DNA of this ciliate and the 5-azacytidine treatment induces encystment in growth conditions. From restriction enzyme digestion and 5-azacytidine experiments, we conclude that a specific DNA demethylation is probably involved in the encystment gene expression of this ciliate.  相似文献   

16.
Ciliate encystment is an eukaryotic cell differentiation process which involves a specific gene expression, to form the resting stage. In this study, we investigate, for first time, the DNA methylation pattern changes during encystment in the ciliate Colpoda inflata, and the 5-azacytidine effect on growing cells and encystment. Results indicate that 5-methylcytosine is present in macronuclear DNA of this ciliate and the 5-azacytidine treatment induces encystment in growth conditions. From restriction enzyme digestion and 5-azacytidine experiments, we conclude that a specific DNA demethylation is probably involved in the encystment gene expression of this ciliate.  相似文献   

17.
Mesenchymal stem cells (MSCs) have limited ability to differentiate into cardiomyocytes and the factors affect this process are not fully understood. In this study, we investigated the passage (P)-related transdifferentiation potential of MSCs into cardiomyocyte-like cells and its relationship to the proliferation ability. After 5-azacytidine treatment, only P4 but not P1 and P8 rat bone marrow MSCs (rMSCs) showed formation of myotube and expressed cardiomyocyte-associated markers. The growth property analysis showed P4 rMSCs had a growth-arrest appearance, while P1 and P8 rMSCs displayed an exponential growth pattern. When the rapid proliferation of P1 and P8 rMSCs was inhibited by 5-bromo-2-deoxyuridine, a mitosis inhibitor, only P1, not P8 rMSCs, differentiated into cardiomyocyte-like cells after 5-azacytidine treatment. These results demonstrate that the differentiation ability of rMSCs into cardiomyocytes is in proliferation ability-dependent and passage-restricted patterns. These findings reveal a novel regulation on the transdifferentiation of MSCs and provide useful information for exploiting the clinical therapeutic potential of MSCs.  相似文献   

18.
Bone marrow stromal cells (BMSC) can differentiate into various cell types including myocytes, which may be valuable in cellular therapy of myocardial infarction. In an attempt to increase the myogenic commitment of BMSC, we investigated the extent of conversion induced by the demethylation agent 5-azacytidine. BMSC isolated from the adult rat tibia were exposed in culture to 5microM 5-azacytidine for 24h, 1 day after seeding. The treatment was repeated at weekly intervals and the expression of muscle-specific proteins and genes was assessed. The results revealed that cultured cells lost the native expression of osteocalcin and alkaline phosphatase as a function of time and began to express connexin 43. Exposure to 5-azacytidine of BMSC induced, at 14 days, a myocyte-resembling phenotype that included the expression of muscle-specific proteins (sarcomeric alpha-actin, troponin T, desmin, alpha-actinin, and GATA-4) and genes (GATA-4, myoD, desmin, and alpha-actinin), numerous mitochondria and myofilaments; however, the latter did not form sarcomeres. Although some of these myogenic markers also appeared in untreated cells, exposure to 5-azacytidine induced an enhanced response of calcium channels, as well as a threefold increase in desmin and myoD gene expression and a twofold increase in alpha-actinin gene and protein expression above the control values. In conclusion, the results demonstrate a promoting effect of 5-azacytidine on the expression of muscle-specific proteins and genes in BMSC in culture. Notably, the myogenic differentiation takes place over a short period of time. Priming of mesenchymal cells to cardiomyogenic differentiation may have significant applications in cellular approaches to ameliorate muscle loss after myocardial ischemia.  相似文献   

19.
Exposure of Ehrlich ascites tumor cells to 5-azacytidine for 5 h resulted in a partial loss of ability of DNA to stimulate ADP-ribosyltransferase activity, as assessed in a reconstituted in vitro enzyme system consisting of purified calf thymus enzyme, calf thymus whole histone and DNA isolated from the cells. The degree of suppression in vitro varied depending on the amount of histone and DNA added and it reached a maximum with a value of 83% and 62% of control for DNAs from cells exposed to 10 microM and 30 microM 5-azacytidine, respectively, at a histone/DNA mass ratio of 0.4. In the absence of histone (conditions of auto-ADP-ribosylation of the enzyme), no suppression was detectable.  相似文献   

20.
Jensen rat sarcoma cells in culture require L-asparagine for growth and lack detectable levels of asparagine synthetase. Cultures exposed for 24 h to graded concentrations of 5-azacytidine give rise to asparagine-independent variants in high frequency. These prototrophs are stable phenotypically whether maintained in the presence or absence of L-asparagine. Asparagine synthetase activity in several variant clones was uniform in thermolability and several kinetic parameters, as well as in immunological properties. Parental Jensen rat sarcoma cells contained no detectable immunologically cross-reacting material. Our data suggest that transitions between asparagine dependence and independence in these cells are mediated by stable shifts in gene expression rather than by structural gene mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号