首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Thymidine phosphorylase (TP)/platelet-derived endothelial cell growth factor, stimulates chemataxis of endothelial cells and is involved in the angiogenesis of human solid tumours. In this study we investigated tissue sections from 93 breast carcinomas for the immunohistochemical expression of thymidine phosphorylase protein and in relationship to several clinicopathological parameters. The possible relationship to tumour neovascularization, VEGF expression, extracellular matrix components (tenascin, fibronectin, collagen type IV and laminin) and cathepsin D was also estimated. Nuclear and/or cytoplasmic TP expression was observed in tumour cells. Immunoreactivity was also often present in the stroma, endothelium and tumour-associated macrophages. High cytoplasmic TP expression, was observed in 35.5%, moderate in 30.1%, mild in 18.3%, while 16.1% of the cases were negative for TP expression. Moderate and high nuclear TP expression was observed in 30.1% of the tumours, low in 43%, while 26.9% did not show nuclear TP expression. High tumour stroma TP expression was expressed in 23.7% of the cases, moderate in 21.5%, mild in 45.2%, while 9.7% did not show stromal TP expression. TP expression did not correlate with the conventional clinicopathological features as well as with the microvessel density and the VEGF expression. Patients with high levels of tumour cell TP expression were significantly associated with a favorable outcome in univariate method of analysis. A positive correlation of TP expression with Cathepsin D expression was noticed. In addition, tumour cell TP expression was correlated with the extracellular matrix component tenascin, while stromal cell TP expression was correlated with the growth fraction of the tumour. Our data suggests that TP expression does not seem to affect directly the neovasculatur of breast carcinoma, although it seems to be implicated in the remodeling of breast cancer tissue, through the interaction with other extracellular matrix components or proteolytic enzymes. In addition, tumour cell TP expression could be considered as a prognostic indicator of breast cancer patients.  相似文献   

2.
Following attenuation of progesterone production corpora lutea are selectively cleared, a process associated with recruitment of macrophages. In the rabbit little is known about luteal immune cell phenotypes and expression of cytokines, which influence immune cells and resident luteal cells, during luteolysis. Consequently, we studied luteal immune cells by immunohistochemistry as well as luteal IL-10, TNFalpha, MCP-1, IFN-gamma, and IL-1beta mRNA expression by semiquantitative RT-PCR from day 8 to day 20 in pseudopregnant rabbits (d8-d20 p.hCG). Luteal function was assayed by serum progesterone levels. Functional luteolysis commenced by d14 p.hCG as indicated by attenuation of serum progesterone levels. X4(+) tissue macrophage levels increased transiently on d12 and d14 p.hCG, whereas CD5(+) T-cell levels transiently declined on these two days. CD68(+) macrophages increased progressively after d16 p.hCG. The luteal mRNA level of the anti-inflammatory cytokine IL-10 as well as the mRNA levels of the pro-inflammatory cytokines TNFalpha and MCP-1 increased after d16 p.hCG and remained elevated up to d20 p.hCG. IFN-gamma and IL-1beta mRNA expression did not vary systematically. In summary, luteolysis was associated with an initial transient increase of X4(+) macrophages and decrease of CD5(+) T-cells, and later recruitment of CD68(+) macrophages. During structural regression pro- and anti-inflammatory cytokines are upregulated possibly to control immune cell function.  相似文献   

3.
Tubulo-interstitial damage is a common finding in the chronically diseased kidney and is characterized by ongoing inflammation and fibrosis leading to renal dysfunction and end-stage renal disease. Upon kidney injury, endogenous ligands can be released which are recognized by innate immune sensors to alarm innate immune system. A new family of innate sensors is the family of TREM (triggering receptor expressed on myeloid cell). TREM1 is an activating receptor and requires association with transmembrane adapter molecule DAP12 (DNAX-associated protein 12) for cell signaling. TREM1-DAP12 pathway has a cross-talk with intracellular signaling pathways of several Toll-like receptors (TLRs) and is able to amplify TLR signaling and thereby contributes to the magnitude of inflammation. So far, several studies have shown that TLRs play a role in obstructive nephropathy but the contribution of TREM1-DAP12 herein is unknown. Therefore, we studied TREM1 expression in human and murine progressive renal diseases and further investigated the role for TREM1-DAP12 by subjecting wild-type (WT), TREM1/3 double KO and DAP12 KO mice to murine unilateral ureter obstruction (UUO) model. In patients with hydronephrosis, TREM1 positive cells were observed in renal tissue. We showed that in kidneys from WT mice, DAP12 mRNA and TREM1 mRNA and protein levels were elevated upon UUO. Compared to WT mice, DAP12 KO mice displayed less renal MCP-1, KC and TGF-β1 levels and less influx of macrophages during progression of UUO, whereas TREM1/3 double KO mice displayed less renal MCP-1 level. Renal fibrosis was comparable in WT, TREM1/3 double KO and DAP12 KO mice. We conclude that DAP12, partly through TREM1/3, is involved in renal inflammation during progression of UUO.  相似文献   

4.
5.
Numerous studies have shown the positive correlation between high levels of Pi and tumour progression. A critical goal of macrophage-based cancer therapeutics is to reduce anti-inflammatory macrophages (M2) and increase proinflammatory antitumour macrophages (M1). This study aimed to investigate the relationship between macrophage polarization and low-Pi stress. First, the spatial populations of M2 and M1 macrophages in 22 HCC patient specimens were quantified and correlated with the local Pi concentration. The levels of M2 and M1 macrophage markers expressed in the peritumour area were higher than the intratumour levels, and the expression of M2 markers was positively correlated with Pi concentration. Next, monocytes differentiated from THP-1 cells were polarized against different Pi concentrations to investigate the activation or silencing of the expression of p65, IκB-α and STAT3 as well as their phosphorylation. Results showed that low-Pi stress irreversibly repolarizes tumour-associated macrophages (TAMs) towards the M1 phenotype by silencing stat6 and activating p65. Moreover, HepG-2 and SMCC-7721 cells were cultured in conditioned medium to investigate the innate anticancer immune effects on tumour progression. Both cancer cell lines showed reduced proliferation, migration and invasion, as epithelial–mesenchymal transition (EMT) was inactivated. In vivo therapeutic effect on the innate and adaptive immune processes was validated in a subcutaneous liver cancer model by the intratumoural injection of sevelamer. Tumour growth was significantly inhibited by the partial deprivation of intratumoural Pi as the tumour microenvironment under low-Pi stress is more immunostimulatory. The anticancer immune response, activated by low-Pi stress, suggests a new macrophage-based immunotherapeutic modality.  相似文献   

6.
Many acute and chronic lung diseases are characterized by the presence of increased numbers of activated macrophages. These macrophages are derived predominantly from newly recruited peripheral blood monocytes and may play a role in the amplification and perpetuation of an initial lung insult. The process of inflammatory cell recruitment is poorly understood, although the expression of inflammatory cell-specific chemoattractants and subsequent generation of chemotactic gradients is likely involved. Although immune cells such as macrophages and lymphocytes are known to generate several inflammatory cell chemoattractants, parenchymal cells can also synthesize and secrete a number of bioactive factors. We now demonstrate the generation of significant monocyte chemotactic activity from tumor necrosis factor (TNF)-alpha and interleukin (IL)-1 beta-treated pulmonary type II-like epithelial cells (A549). The predominant inducible monocyte chemotaxin had an estimated molecular mass of approximately 14-15 kDa and was neutralized by specific antibody to human monocyte chemotactic protein-1 (MCP-1). Induction of activity was accompanied by increases in steady-state mRNA level for MCP-1. These data are consistent with the induction of MCP-1 expression from A549 cells by TNF and IL-1. MCP-1 production from A549 cells could be induced by lipopolysaccharide (LPS)-stimulated alveolar macrophage (AM)-conditioned media, but not by LPS alone. The inducing activity in AM-conditioned media was neutralized with specific antibodies to IL-1 beta, but not TNF-alpha. Our findings suggest that the alveolar epithelium can participate in inflammatory cell recruitment via the production of MCP-1 and that cytokine networking between contiguous alveolar macrophages and the pulmonary epithelium may be essential for parenchymal cell MCP-1 expression.  相似文献   

7.
Studies showed that monocyte chemotactic protein-1 (MCP-1) concentrations are increased in obesity. In our current study, we demonstrate that plasma MCP-1 level in leptin-deficient ob/ob mice is significantly higher than in lean mice. Furthermore, we determined that basal adipose tissue MCP-1 mRNA levels are significantly higher in ob/ob mice compared with lean mice. To determine the mechanisms underlying obesity-associated increases in plasma and adipose tissue MCP-1 levels, we determined adipose tissue cell type sources of MCP-1 production. Our data show that adipose tissue stem cells (CD34(+)), macrophages (F4/80(+)), and stromal vascular fraction (SVF) cells express significantly higher levels of MCP-1 compared with adipocytes under both basal and lipopolysaccharide (LPS)-stimulated conditions. Furthermore, basal and LPS-induced MCP-1 secretion levels were the same for both adipose F4/80(+) and CD34(+) cells, whereas adipose CD34(+) cells have twofold higher cell numbers (30% of total SVF cells) compared with F4/80(+) macrophages (15%). Our data also show that CD34(+) cells from visceral adipose tissue depots secrete significantly higher levels of MCP-1 ex vivo when compared with CD34(+) cells from subcutaneous adipose tissue depots. Taken together, our data suggest that adipose CD34(+) stem cells may play an important role in obesity-associated increases in plasma MCP-1 levels.  相似文献   

8.
9.
The roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in obesity-associated insulin resistance have been explored in both animal and human studies. However, our current understanding of obesity-associated insulin resistance relies on studies of artificial metabolic extremes. The purpose of this study was to explore the roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in human patients with modest obesity and early metabolic dysfunction. We obtained omental adipose tissue and fasting blood samples from 51 females undergoing gynecologic surgery. We investigated serum concentrations of proinflammatory cytokines and adipokines as well as the mRNA expression of proinflammatory and macrophage phenotype markers in visceral adipose tissue using ELISA and quantitative RT-PCR. We measured adipose tissue inflammation and macrophage infiltration using immunohistochemical analysis. Serum levels of adiponectin and leptin were significantly correlated with HOMA-IR and body mass index. The levels of expression of MCP-1 and TNF-α in visceral adipose tissue were also higher in the obese group (body mass index ≥ 25). The expression of mRNA MCP-1 in visceral adipose tissue was positively correlated with body mass index (r = 0.428, p = 0.037) but not with HOMA-IR, whereas TNF-α in visceral adipose tissue was correlated with HOMA-IR (r = 0.462, p = 0.035) but not with body mass index. There was no obvious change in macrophage phenotype or macrophage infiltration in patients with modest obesity or early metabolic dysfunction. Expression of mRNA CD163/CD68 was significantly related to mitochondrial-associated genes and serum inflammatory cytokine levels of resistin and leptin. These results suggest that changes in the production of inflammatory biomolecules precede increased immune cell infiltration and induction of a macrophage phenotype switch in visceral adipose tissue. Furthermore, serum resistin and leptin have specific roles in the regulation of adipose tissue macrophages in patients with modest obesity or early metabolic dysfunction.  相似文献   

10.
Monocyte chemotactic protein-1 (MCP-1, CCL2) is an important determinant of macrophage infiltration in tumors, ovarian carcinoma in particular. MCP-1 binds the chemokine receptor CCR2. Recent results indicate that proinflammatory and anti-inflammatory signals regulate chemokine receptor expression in monocytes. The present study was designed to investigate the expression of CCR2 in tumor-associated macrophages (TAM) from ovarian cancer patients. TAM isolated from ascitic or solid ovarian carcinoma displayed defective CCR2 mRNA (Northern blot and PCR) and surface expression and did not migrate in response to MCP-1. The defect was selective for CCR2 in that CCR1 and CCR5 were expressed normally in TAM. CCR2 gene expression and chemotactic response to MCP-1 were decreased to a lesser extent in blood monocytes from cancer patients. CCR2 mRNA levels and the chemotactic response to MCP-1 were drastically reduced in fresh monocytes cultured in the presence of tumor ascites from cancer patients. Ab against TNF-alpha restored the CCR2 mRNA level in monocytes cultured in the presence of ascitic fluid. The finding of defective CCR2 expression in TAM, largely dependent on local TNF production, is consistent with previous in vitro data on down-regulation of chemokine receptors by proinflammatory molecules. Receptor inhibition may serve as a mechanism to arrest and retain recruited macrophages and to prevent chemokine scavenging by mononuclear phagocytes at sites of inflammation and tumor growth. In the presence of advanced tumors or chronic inflammation, systemic down-regulation of receptor expression by proinflammatory molecules leaking in the systemic circulation may account for defective chemotaxis and a defective capacity to mount inflammatory responses associated with advanced neoplasia.  相似文献   

11.
Monocyte chemoattractant protein (MCP)-1 plays a key role in atherosclerosis and inflammation associated with visceral adiposity by inducing mononuclear cell migration. Evidence shows that mouse peritoneal macrophages (MPM) express a 12-lipoxygenase (12/15-LO) that has been clearly linked to accelerated atherosclerosis in mouse models and increased monocyte endothelial interactions in both rodent and human cells. However, the role of 12/15-LO products in regulating MCP-1 expression in macrophages has not been clarified. In this study, we tested the role of 12/15-LO products using MPM and the mouse macrophage cell line, J774A.1 cells. We found that 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE] increased MCP-1 mRNA and protein expression in J774A.1 cells and MPM. In contrast, 12(R)-HETE, a lipid not derived from 12/15-LO, did not affect MCP-1 expression. 15(S)-HETE also increased MCP-1 mRNA expression, but the effect was less compared with 12(S)-HETE. MCP-1 mRNA expression was upregulated in a macrophage cell line stably overexpressing 12/15-LO (Plox-86 cells) and in MPM isolated from a 12/15-LO transgenic mouse. In addition, the expression of MCP-1 was downregulated in MPM isolated from 12/15-LO knockout mice. 12(S)-HETE-induced MCP-1 mRNA expression was attenuated by specific inhibitors of protein kinase C (PKC) and p38 mitogen-activated protein kinase (p38). 12(S)-HETE also directly activated NADPH oxidase activity. Two NADPH oxidase inhibitors, apocynin and diphenyleneiodonium chloride, blocked 12(S)-HETE-induced MCP-1 mRNA. Apocynin attenuated 12(S)-HETE-induced MCP-1 protein secretion. These data show that 12(S)-HETE increases MCP-1 expression by inducing PKC, p38, and NADPH oxidase activity. These results suggest a potentially important mechanism linking 12/15-LO activation to MCP-1 expression that induces inflammatory cell infiltration.  相似文献   

12.
We investigated the effect of IFN-beta on beta-chemokine expression in differentiating human peripheral blood monocytes. MCP-1, MIP-1alpha and MIP-1beta were constitutively expressed in 1 day-cultured monocytes, and their secretion increased with time in culture despite any change in mRNA accumulation. IFN-beta treatment of differentiating monocytes resulted in a marked and dose-dependent increase of beta-chemokine secretion, which was regulated differently with respect to the differentiation stage. In particular, IFN-beta upregulated MCP-1 secretion in monocytes at all stages of differentiation although its effect was significantly higher in 1-day cultured monocytes as compared to monocyte-derived macrophages (MDM). In contrast, MIP-1alpha and MIP-1beta secretion was up-regulated by IFN-beta only in MDM. Although MCP-1, MIP-1alpha and MIP-1beta mRNA expression was up-regulated by IFN-beta in both 1 day-cultured monocytes and MDM, no correlation was found between mRNA level and protein secretion. These results suggest that the regulation of beta-chemokine secretion in monocytes/macrophages by IFN-beta occurred through different mechanisms, involving both a direct effect of this cytokine on chemokine gene expression and translational/post-translational steps of regulation more likely linked to the differentiation process. This finding reveals a novel role for this cytokine in the recruitment of specific cell types during the immune response, which may be relevant in the control of viral infections in vivo.  相似文献   

13.
14.
CCR2, and its principle ligand MCP-1/CCL2, have been well documented for their ability to induce monocyte infiltration and promote the pathogenesis of rheumatoid arthritis and atherosclerosis. In order to assess additional roles for CCR2, we inserted allogeneic implants into CCR2-/- and MCP-1-/- mice and characterized T cell responses and the regulatory role of CCR2 on MCP-1 expression. The results demonstrate a marked decrease in lymphocyte infiltration in both CCR2-/- and MCP-1-/- animals. In contrast, IL-12 and CTL function were only suppressed in CCR2-/- animals. Further, whereas MCP-1 was only transiently elevated in the inflammatory fluid of WT animals, levels were sustained within the implants (5000pg/ml; >8 days) and serum (243pg/ml) of CCR2-/- mice. Higher levels of MCP-1 were also observed in the culture supernatants of CCR2-/- macrophages as compared to WT cells despite no difference in mRNA levels. Evidence that MCP-1 levels are regulated by receptor binding and internalization was suggested by its rapid decline when added to WT macrophages at 37 degrees C but not 4 degrees C. These studies indicate that CCR2 plays an important role in regulating T cell responses and controlling the level of MCP-1 at inflammatory sites.  相似文献   

15.
Baboons show significant variation in body weight and composition, coupled with insulin resistance and phenotypes associated with the metabolic syndrome. An omental adipose tissue biopsy and a fasting blood sample were collected from 40 unrelated adult baboons from the colony at Southwest Foundation for Biomedical Research in San Antonio, TX. Serum was separated for analyses of circulating levels of glucose, insulin, adiponectin, resistin, interleukin 6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1 or CCL-2). Adipose tissue biopsies were analyzed for cell volume and number. Total RNA was isolated from adipose tissue and adiponectin, resistin, delta-resistin, MCP-1 and IL-6 mRNA abundance were measured using real time, quantitative RT-PCR. Partial correlation coefficients were calculated among adipokine expression, fat tissue cell volume, and circulating levels of proteins. Cell volume was significantly correlated with expression of MCP-1 (r=0.44, p<0.05) and IL-6 mRNA (r=0.47, p<0.01). A step wise regression analysis was conducted with adipose tissue cell volume as dependent variable. The model identified IL-6 mRNA levels in adipose tissue as the only predictor. These observations support the role of IL-6 as a possible paracrine regulator in adipose tissue.  相似文献   

16.
目的:基质金属蛋白酶及组织金属蛋白酶抑制剂在肾细胞癌转移中占有重要的作用,研究肾细胞癌组织中MMP-2、MMP-9、TIMP-1和TIMP-2的表达情况,为肾癌转移的治疗提供理论依据。方法:选取36例肾细胞癌肾组织标本,从相同的肾细胞癌组织及癌旁肾组织获得对照样本,均进行根治性肾切除手术切除。肿瘤分期按TNM分期标准。为了统计评估,肿瘤1期和2期为低级,3期以上为高级。RT-PCR检测肿瘤和正常组织中的MMP-2、MMP-9、TIMP-1和TIMP-2的表达。结果:不同样本MMPs和TIMPs表达水平各不相同。肾细胞癌组织中MMP-2、MMP-9、TIMP-1、TIMP-2在肾细胞癌中的表达明显高于正常肾组织(P0.05)。在肾细胞癌的肿瘤分期方面,MMP-2与MMP-9和肿瘤的分期显著相关,随着肿瘤分期的增加,MMP-2与MMP-9的表达明显升高(P0.05),而TIMP-1与TIMP-2与肿瘤的分期无关。结论:肾细胞癌组织中TIMP-2、MMP-2,MMP-9,TIMP-1的mRNA表达显著高于正常肾组织,抑制MMPS的表达将成为治疗肾细胞癌转移的新的方向。  相似文献   

17.
目的:检测胆囊腺癌组织中趋化因子MCP-1和MIP-1α的表达、TAM计数并探讨其临床病理意义。方法:收集中南大学湘雅二医院及湖南省人民医院近五年胆囊腺癌手术切除标本36例及慢性胆囊炎手术切除标本10例,采用原位分子杂交方法检测MCP-1和MIP-1α的表达,免疫组化法进行TAM计数。结果:胆囊腺癌组织中MCP-1、MIP-1αmRNA表达阳性率及评分均明显高于慢性胆囊炎(P〈0.01);高分化胆囊腺癌中二者的阳性率及评分均低于低分化胆囊腺癌,其中MCP-1mRNA比较有显著性差异(P〈0.05);MCP-1、MIP-1α mRNA的表达呈显著正相关。胆囊腺癌组织MCP-1mRNA表达阳性率及其评分与侵犯胆总管及发生淋巴结转移显著相关;MIP-1α mRNA表达阳性率及其评分与侵犯肝脏显著相关。胆囊腺癌组织中,TAM计数(24.89±0.84)明显高于慢性胆囊炎组织(16.19±0.66),有显著性差异(P〈0.01)。TAM与MCP-1、MIP-1α mRNA表达评分值均呈显著正相关(r分别为0.580,0.567)。MCP-1 mRNA与MIP-1α mRNA评分值之间呈显著正相关(r=0.638)。结论:MCP-1、MIP-1α的表达增加及TAM计数升高可能调控和影响胆囊癌的发生和发展,MCP-1、MIP-1α可能促进TAM向胆囊癌组织迁移浸润。  相似文献   

18.
Homocysteinemia is an independent risk factor for cardiovascular disorders. The recruitment of monocytes is an important event in atherogenesis. Monocyte chemoattractant protein-1 (MCP-1) is a potent chemokine that stimulates monocyte migration into the intima of arterial walls. The objective of the present study was to investigate the effect of homocysteine on MCP-1 expression in macrophages and the underlying mechanism of such effect. Human monocytic cell (THP-1)-derived macrophages were incubated with homocysteine. By nuclease protection assay and ELISA, homocysteine (0.05-0.2 mM) was shown to significantly enhance the expression of MCP-1 mRNA (up to 2.6-fold) and protein (up to 4.8-fold) in these cells. Homocysteine-induced MCP-1 expression resulted in increased monocyte chemotaxis. The increase in MCP-1 expression was associated with activation of nuclear factor (NF)-kappaB due to increased phosphorylation of the inhibitory protein (IkappaB-alpha) as well as reduced expression of IkappaB-alpha mRNA in homocysteine-treated cells. In conclusion, our results demonstrate that homocysteine, at pathological concentration, stimulates MCP-1 expression in THP-1 macrophages via NF-kappaB activation.  相似文献   

19.
Cellular immunity plays a major role in controlling human papilloma virus infection and development of cervical carcinoma. Mononuclear cell infiltration possibly due to the action of chemokines becomes prominent in the tumor tissue. In fact, the macrophage chemoattractant protein-1, MCP-1, was detected in cervical squamous cell carcinoma in situ, whereas absent in cultured cells. From this, unknown environmental factors were postulated regulating chemokine expression in vivo. In this study, we show high CD40 expression on cervical carcinoma cells and CD40 ligand (CD40L) staining on attracted T cells in tumor tissue, suggesting a paracrine stimulation mechanism via CD40L-CD40 interactions. We therefore investigated chemokine synthesis in nonmalignant and malignant human papilloma virus-positive cell lines after CD40L exposure. Constitutive expression of MCP-1, MCP-3, RANTES, and IFN-gamma-inducible protein-10 was almost undetectable in all cell lines tested. CD40L was able to induce MCP-1 production; however, despite much higher CD40 expression in malignant cells, MCP-1 induction was significantly lower compared with nontumorigenic cells. After sensitization with IFN-gamma, another T cell-derived cytokine showing minimal effects on CD40 expression levels, CD40 ligation led to a more than 20-fold MCP-1 induction in carcinoma cell lines. An even stronger effect was observed for IFN-gamma-inducible protein-10. Our study highlights the synergism of T cell-derived mediators such as CD40L and IFN-gamma for chemokine responses in cervical carcinoma cells, helping to understand the chemokine expression patterns observed in vivo.  相似文献   

20.
Interferon-gamma-induced apoptosis and activation of THP-1 macrophages   总被引:6,自引:0,他引:6  
Apoptotic macrophages are frequently observed in human atherosclerotic lesions, and are considered to be involved in plaque instability in atherosclerosis. However, the molecular mechanism that promotes programmed cell death of macrophages in atherosclerosis remains to be elucidated. In this study, we investigated the effects of interferon-gamma (IFN-gamma), a cytokine secreted by activated T helper 1 (Th1) lymphocytes, on apoptotic cell death of THP-1 macrophages. Further we studied whether these apoptotic macrophages could be simultaneously activated in vitro and subsequently overgenerate monocyte chemoattractant protein-1 (MCP-1). When THP-1 macrophages were cultured with various concentrations of IFN-gamma, DNA synthesis was significantly decreased. IFN-gamma was found significantly to induce apoptotic cell death in THP-1 macrophages. RNase protection assay revealed that IFN-gamma up-regulated the mRNA levels of two pro-apoptotic molecules, tumor necrosis factor-alpha receptor 1 (TNFR1) and caspase-8, in THP-1 cells. Furthermore, TNF-alpha antibodies were found completely to neutralize the IFN-gamma-induced inhibition in DNA synthesis as well as apoptotic cell death in macrophages. IFN-gamma was found to activate these macrophages to stimulate MCP-1 production. The results suggest that IFN-gamma not only exerted apoptotic effects on macrophages, but also activated them and subsequently overgenerated MCP-1, and was thus involved in the development and progression of atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号