首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Tax oncoprotein of human T-cell leukemia virus type 1 (HTLV-1) induces leukemia in transgenic mice and permanent T-cell growth in vitro. In transformed lymphocytes, it acts as an essential growth factor. Tax stimulates the cell cycle in the G(1) phase by activating the cyclin-dependent kinase (CDK) CDK4 and CDK6 holoenzyme complexes. Here we show that Tax directly interacts with CDK4. This binding to CDK4 was specific, since Tax did not bind to either CDK2 or CDK1. The interaction with CDK4/cyclin D complexes was observed in vitro, in transfected fibroblasts, in HTLV-1-infected T cells, and in adult T-cell leukemia-derived cultures. Binding studies with several point and deletion mutants indicated that the N terminus of Tax mediates the interaction with CDK4. The Tax/CDK complex represented an active holoenzyme which capably phosphorylates the Rb protein in vitro and is resistant to repression by the inhibitor p21(CIP). Binding-deficient Tax mutants failed to activate CDK4, indicating that direct association with Tax is required for enhanced kinase activity. Tax also increased the association of CDK4 with its positive cyclin regulatory subunit. Thus, protein-protein contact between Tax and the components of the cyclin D/CDK complexes provides a further mechanistic explanation for the mitogenic and immortalizing effects of this HTLV-1 oncoprotein.  相似文献   

3.
4.
5.
6.
7.
8.
We previously characterized the SLS1 gene in the yeast Yarrowia lipolytica and showed that it interacts physically with YlKar2p to promote translocation across the endoplasmic-reticulum membrane (A. Boisramé, M. Kabani, J. M. Beckerich, E. Hartmann, and C. Gaillardin, J. Biol. Chem. 273:30903-30908, 1998). A Y. lipolytica Kar2p mutant was isolated that restored interaction with an Sls1p mutant, suggesting that the interaction with Sls1p could be nucleotide and/or conformation dependent. This result was used as a working hypothesis for more accurate investigations in Saccharomyces cerevisiae. We show by two-hybrid an in vitro assays that the S. cerevisiae homologue of Sls1p interacts with ScKar2p. Using dominant lethal mutants of ScKar2p, we were able to show that ScSls1p preferentially interacts with the ADP-bound conformation of the molecular chaperone. Synthetic lethality was observed between DeltaScsls1 and translocation-deficient kar2 or sec63-1 mutants, providing in vivo evidence for a role of ScSls1p in protein translocation. Synthetic lethality was also observed with ER-associated degradation and folding-deficient kar2 mutants, strongly suggesting that Sls1p functions are not restricted to the translocation process. We show that Sls1p stimulates in a dose-dependent manner the binding of ScKar2p on the lumenal J domain of Sec63p fused to glutathione S-transferase. Moreover, Sls1p is shown to promote the Sec63p-mediated activation of Kar2p's ATPase activity. Our data strongly suggest that Sls1p could be the first GrpE-like protein described in the endoplasmic reticulum.  相似文献   

9.
10.
11.
12.
Deregulation of the cell cycle is a common strategy employed by many DNA and RNA viruses to trap and exploit the host cell machinery toward their own benefit. In many coronaviruses, the nucleocapsid protein (N protein) has been shown to inhibit cell cycle progression although the mechanism behind this is poorly understood. The N protein of severe acute respiratory syndrome-coronavirus (SARS-CoV) bears signature motifs for binding to cyclin and phosphorylation by cyclin-dependent kinase (CDK) and has recently been reported by us to get phosphorylated by the cyclin-CDK complex (Surjit, M., Kumar, R., Mishra, R. N., Reddy, M. K., Chow, V. T., and Lal, S. K. (2005) J. Virol. 79, 11476-11486). In the present study, we prove that the N protein of SARS-CoV can inhibit S phase progression in mammalian cell lines. N protein expression was found to directly inhibit the activity of the cyclin-CDK complex, resulting in hypophosphorylation of retinoblastoma protein with a concomitant down-regulation in E2F1-mediated transactivation. Coexpression of E2F1 under such conditions could restore the expression of S phase genes. Analysis of RXL and CDK phosphorylation mutant N protein identified the mechanism of inhibition of CDK4 and CDK2 activity to be different. Whereas N protein could directly bind to cyclin D and inhibit the activity of CDK4-cyclin D complex; inhibition of CDK2 activity appeared to be achieved in two different ways: indirectly by down-regulation of protein levels of CDK2, cyclin E, and cyclin A and by direct binding of N protein to CDK2-cyclin complex. Down-regulation of E2F1 targets was also observed in SARS-CoV-infected VeroE6 cells. These data suggest that the S phase inhibitory activity of the N protein may have major significance during viral pathogenesis.  相似文献   

13.
14.
15.
Polo-like kinase 3 (Plk3, previously termed Prk) contributes to regulation of M phase of the cell cycle (Ouyang, B., Pan, H., Lu, L., Li, J., Stambrook, P., Li, B., and Dai, W. (1997) J. Biol. Chem. 272, 28646-28651). Plk3 physically interacts with Cdc25C and phosphorylates this protein phosphatase predominantly on serine 216 (Ouyang, B., Li, W., Pan, H., Meadows, J., Hoffmann, I., and Dai, W. (1999) Oncogene 18, 6029-6036), suggesting that the role of Plk3 in mitosis is mediated, at least in part, through direct regulation of Cdc25C. Here we show that ectopic expression of a kinase-active Plk3 (Plk3-A) induced apoptosis. In response to DNA damage, the kinase activity of Plk3 was rapidly increased in an ATM-dependent manner, whereas that of Plk1 was markedly inhibited. Recombinant Plk3 phosphorylated in vitro a glutathione S-transferase fusion protein containing p53, but not glutathione S-transferase alone. Recombinant Plk1 also phosphorylated p53 but on residues that differed from those targeted by Plk3. Co-immunoprecipitation and pull-down assays demonstrated that Plk3 physically interacted with p53 and that this interaction was enhanced upon DNA damage. In vitro kinase assays followed by immunoblotting showed that serine 20 of p53 was a target of Plk3. Furthermore, expression of a kinase-defective Plk3 mutant (Plk3(K52R)) resulted in significant reduction of p53 phosphorylation on serine 20, which was correlated with a decrease in the expression of p21 and with a concomitant increase in cell proliferation. These results strongly suggest that Plk3 functionally links DNA damage to cell cycle arrest and apoptosis via the p53 pathway.  相似文献   

16.
17.
Cyclin D-dependent kinases act as mitogen-responsive, rate-limiting controllers of G1 phase progression in mammalian cells. Two novel members of the mouse INK4 gene family, p19 and p18, that specifically inhibit the kinase activities of CDK4 and CDK6, but do not affect those of cyclin E-CDK2, cyclin A-CDK2, or cyclin B-CDC2, were isolated. Like the previously described human INK4 polypeptides, p16INK4a/MTS1 and p15INK4b/MTS2, mouse p19 and p18 are primarily composed of tandemly repeated ankyrin motifs, each ca. 32 amino acids in length, p19 and p18 bind directly to CDK4 and CDK6, whether untethered or in complexes with D cyclins, and can inhibit the activity of cyclin D-bound cyclin-dependent kinases (CDKs). Although neither protein interacts with D cyclins or displaces them from preassembled cyclin D-CDK complexes in vitro, both form complexes with CDKs at the expense of cyclins in vivo, suggesting that they may also interfere with cyclin-CDK assembly. In proliferating macrophages, p19 mRNA and protein are periodically expressed with a nadir in G1 phase and maximal synthesis during S phase, consistent with the possibility that INK4 proteins limit the activities of CDKs once cells exit G1 phase. However, introduction of a vector encoding p19 into mouse NIH 3T3 cells leads to constitutive p19 synthesis, inhibits cyclin D1-CDK4 activity in vivo, and induces G1 phase arrest.  相似文献   

18.
Bao GC  Wang JG  Jong A 《FEBS letters》2006,580(15):3687-3693
Cip/Kip family protein p21, a cyclin-dependent kinase (CDK) inhibitor, is directly transactivated by retinoic acid receptor alpha (RARalpha) upon retinoic acid (RA):RARalpha binding. Yet the role of p21 upregulation by RA in lymphoma cells remains unknown. Here, we show that, in human pre-B lymphoma Nalm6 cells, RA-induced proliferation inhibition results from massive cell death characterized by apoptosis. Upregulated p21 by RA accompanies caspase-3 activation and precedes the occurrence of apoptosis. p21 induction leads to increased p21 complex formation with cyclin E/CDK2, which occurs when cyclin E and CDK2 levels remain constant. CDK2 can alternatively promote apoptosis, but the mechanisms remain unknown. Data presented here suggest a novel RA-signaling, by which RA-induced p21 induction and complex formation with cyclin E/CDK2 diverts CDK2 function from normally driving proliferation to alternatively promoting apoptosis.  相似文献   

19.
Regulation of cyclin-dependent kinase 2 activity by ceramide   总被引:5,自引:0,他引:5  
Cyclin-dependent kinases have been implicated in the inactivation of retinoblastoma (Rb) protein and cell cycle progression. Recent studies have demonstrated that the lipid molecule ceramide is able to induce Rb hypophosphorylation leading to growth arrest and cellular senescence. In this study, we examined the underlying mechanisms of Rb hypophosphorylation and cell cycle progression utilizing the antiproliferative molecule ceramide. C6-Ceramide induced a G0/G1 arrest of the cell cycle in WI38 human diploid fibroblasts. Employing immunoprecipitation kinase assays, we found that ceramide specifically inhibited cyclin-dependent kinase CDK2, with a mild effect on CDC2 and significantly less effect on CDK4. The effect of ceramide was specific such that C6-dihydroceramide was not effective. Ceramide did not directly inhibit CDK2 in vitro but caused activation of p21, a major class of CDK-inhibitory proteins, and led to a greater association of p21 to CDK2. Using purified protein phosphatases, we showed that ceramide activated both protein phosphatase 1 and protein phosphatase 2A activities specific for CDK2 in vitro. Further, calyculin A and okadaic acid, both potent protein phosphatase inhibitors, together almost completely reversed the effects of ceramide on CDK2 inhibition. Taken together, these results demonstrate a dual mechanism by which ceramide inhibits the cell cycle. Ceramide causes an increase in p21 association with CDK2 and through activation of protein phosphatases selectively regulates CDK2. These events may lead to activation of Rb protein and subsequent cell cycle arrest.  相似文献   

20.
Little is known about the posttranslational control of the cyclin-dependent protein kinase (CDK) inhibitor p21. We describe here a transient phosphorylation of p21 in the G2/M phase. G2/M-phosphorylated p21 is short-lived relative to hypophosphorylated p21. p21 becomes nuclear during S phase, prior to its phosphorylation by CDK2. S126-phosphorylated cyclin B1 binds to T57-phosphorylated p21. Cdc2 kinase activation is delayed in p21-deficient cells due to delayed association between Cdc2 and cyclin B1. Cyclin B1-Cdc2 kinase activity and G2/M progression in p21-/- cells are restored after reexpression of wild-type but not T57A mutant p21. The cyclin B1 S126A mutant exhibits reduced Cdc2 binding and has low kinase activity. Phosphorylated p21 binds to cyclin B1 when Cdc2 is phosphorylated on Y15 and associates poorly with the complex. Dephosphorylation on Y15 and phosphorylation on T161 promotes Cdc2 binding to the p21-cyclin B1 complex, which becomes activated as a kinase. Thus, hyperphosphorylated p21 activates the Cdc2 kinase in the G2/M transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号