首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A low capacity for regulation of extracellular Mg(2+) has been proposed to exclude reptant marine decapod crustaceans from temperatures below 0°C and thus to exclude them from the high Antarctic. To test this hypothesis and to elaborate the underlying mechanisms in the most cold-tolerant reptant decapod family of the sub-Antarctic, the Lithodidae, thermal tolerance was determined in the crab Paralomis granulosa (Decapoda, Anomura, Lithodidae) using an acute stepwise temperature protocol (-1°, 1°, 4°, 7°, 10°, and 13°C). Arterial and venous oxygen partial pressures (Po(2)) in hemolymph, heartbeat and ventilation beat frequencies, and hemolymph cation composition were measured at rest and after a forced activity (righting) trial. Scopes for heartbeat and ventilation beat frequencies and intermittent heartbeat and scaphognathite beat rates at rest were evaluated. Hemolymph [Mg(2+)] was experimentally reduced from 30 mmol L(-1) to a level naturally observed in Antarctic caridean shrimps (12 mmol L(-1)) to investigate whether the animals remain more active and tolerant to cold (-1°, 1°, and 4°C). In natural seawater, righting speed was significantly slower at -1° and 13°C, compared with acclimation temperature (4°C). Arterial and venous hemolymph Po(2) increased in response to cooling even though heartbeat and ventilation beat frequencies as well as scopes decreased. At rest, ionic composition of the hemolymph was not affected by temperature. Activity induced a significant increase in hemolymph [K(+)] at -1° and 1°C. Reduction of hemolymph [Mg(2+)] did not result in an increase in activity, an increase in heartbeat and ventilation beat frequencies, or a shift in thermal tolerance to lower temperatures. In conclusion, oxygen delivery in this cold-water crustacean was not acutely limiting cold tolerance, and animals may have been constrained more by their functional capacity and motility. In contrast to earlier findings in temperate and subpolar brachyuran crabs, these constraints remained insensitive to changing Mg(2+) levels.  相似文献   

2.
The effect of oxygen partial pressure (Po(2)) on development and hatching was investigated in aquatic embryos of the myobatrachid frog, Crinia georgiana, in the field and in the laboratory. Eggs from 29 field nests experienced widely variable Po(2) but similar temperatures. Mean Po(2) in different nests ranged between 2.9 and 19.3 kPa (grand mean 12.9 kPa), and mean temperature ranged between 11.9 degrees and 16.8 degrees C (grand mean 13.7 degrees C). There was no detectable effect of Po(2) or temperature on development rate or hatching time in the field, except in one nest at 2.9 kPa where the embryos died, presumably in association with hypoxia. Laboratory eggs were incubated at 15 degrees C at a range of Po(2) between 2 and 25 kPa. Between 5 and 25 kPa, there was almost no effect of Po(2) on development rate to stage 26, but the embryos hatched progressively earlier-at earlier stages and lower gut-free body mass-at lower Po(2). At 2 kPa, development was severely delayed, growth of the embryo slowed, and morphological anomalies appeared. A high tolerance to low Po(2) may be an adaptation to embryonic development in the potentially hypoxic, aquatic environment.  相似文献   

3.
Geographic distribution limits of ectothermal animals appear to be correlated with thermal tolerance thresholds previously identified from the onset of anaerobic metabolism. Transition to these critical temperatures was investigated in the spider crab (Maja squinado) with the goal of identifying the physiological processes limiting thermal tolerance. Heart and ventilation rates as well as PO(2) in the hemolymph were recorded on-line during progressive temperature change between 12 and 0 degrees C (1 degrees C/h) and between 12 and 40 degrees C (2 degrees C/h). Lactate and succinate were measured in tissues and hemolymph after intermediate or final temperatures were reached. High levels of hemolymph oxygenation suggest that an optimum range of aerobic performance exists between 8 and 17 degrees C. Thermal limitation may already set in at the transition from optimum to pejus (pejus = turning worse, progressively deleterious) range, characterized by the onset of a decrease in arterial PO(2) due to reduced ventilatory and cardiac performance. Hemolymph PO(2) values fell progressively toward both low and high temperature extremes until critical temperatures were reached at approximately 1 and 30 degrees C, as indicated by low PO(2) and the onset of anaerobic energy production by mitochondria. In conclusion, the limited capacity of ventilation and circulation at extreme temperatures causes insufficient O(2) supply, thereby limiting aerobic scope and, finally, thermal tolerance.  相似文献   

4.
Critical oxygen pressure (P(C)) is used in respiratory physiology to measure the response to hypoxia. P(C) defines the partial pressure of oxygen (Po(2)) at which an oxygen regulator switches to a conformer. However, not all animals show such clear patterns in oxygen consumption rate (Mo2), and there are many methods for determining P(C). This study assesses two methods that determine regulatory ability and four that calculate P(C). A new method, the regulation index (RI), assigns to an animal a relative measure of regulatory ability by calculating the area under the Mo2 versus Po(2) curve that is greater than a linear trend. The six methods are applied to developmental Mo2 data of two amphibians, Pseudophryne bibronii and Crinia georgiana. The four methods used to determine P(C) produced similar results but failed to identify the increase in regulation on hatching in C. georgiana or the greater regulation in larval C. georgiana compared with P. bibronii. Of the two methods that evaluated regulation, only the RI satisfactorily represented the entire range of Po(2). The RI is advantageous because it has clearly defined limits and does not constrain data to fit any single pattern. The RI can be used in concert with P(C), which can be easily calculated during the RI analysis, to provide a clearer definition of the Mo2 response to environmental Po(2).  相似文献   

5.
The value of the diffusion coefficient for oxygen in muscle is uncertain. The diffusion coefficient is important because it is a determinant of the extracellular oxygen tension at which the core of muscle fibers becomes anoxic (Po(2crit)). Anoxic cores in muscle fibers impair muscular function and may limit adaptation of muscle cells to increased load and/or activity. We used Hill's diffusion equations to determine Krogh's diffusion coefficient (Dalpha) for oxygen in single skeletal muscle fibers from Xenopus laevis at 20 degrees C (n = 6) and in myocardial trabeculae from the rat at 37 degrees C (n = 9). The trabeculae were dissected from the right ventricular myocardium of control (n = 4) and monocrotaline-treated, pulmonary hypertensive rats (n = 5). The cross-sectional area of the preparations, the maximum rate of oxygen consumption (Vo(2 max)), and Po(2crit) were determined. Dalpha increased in the following order: Xenopus muscle fibers Dalpha = 1.23 nM.mm(2).mmHg(-1).s(-1) (SD 0.12), control rat trabeculae Dalpha = 2.29 nM.mm(2).mmHg(-1).s(-1) (SD 0.24) (P = 0.0012 vs. Xenopus), and hypertrophied rat trabeculae Dalpha = 6.0 nM.mm(2).mmHg(-1).s(-1) (SD 2.8) (P = 0.039 vs. control rat trabeculae). Dalpha increased with extracellular space in the preparation (Spearman's rank correlation coefficient = 0.92, P < 0.001). The values for Dalpha indicate that Xenopus muscle fibers cannot reach Vo(2 max) in vivo because Po(2crit) can be higher than arterial Po(2) and that hypertrophied rat cardiomyocytes can become hypoxic at the maximum heart rate.  相似文献   

6.
Summary Control of extracellular acid-base status was examined during activity and dormancy inOtala lactea (Pulmonata, Helicidae). Active snails showed little variation in hemolymph pH and at constant temperature. With increase of temperature, hemolymph increased from about 6 Torr at 5°C to 13 Torr at 24°C and pH decreased by about 0.017 pH units/°C, a pattern consistent with alphastat regulation of pH via ventilatory control of .During dormancy, mean hemolymph increased to about 50 Torr. Venous pH declined by about 0.4 units due to hypercapnia and fluctuated more widely than in active snails due to variability of . Hemolymph pH declined further in prolonged dormancy due to progressive metabolic acidosis; after one year of dormancy the mean hemolymph pH was about 0.8 units lower than that of active snails at similar temperature.Active snails exposed experimentally to high showed a large increase in hemolymph [HCO 3 ]. However, [HCO 3 ] declined by up to 50% during dormancy, despite the naturally occurring hypercapnia. Hemolymph osmolality and the concentrations of solutes other than [HCO 3 ] increased with increasing duration of dormancy. Concentrations of magnesium and calcium increased about 2.5 times more rapidly than those of sodium and chloride, indicating that acidosis is partially offset by the dissolution of carbonates from the shell or tissues.  相似文献   

7.
Several previous reports, often from studies utilising heavily instrumented animals, have indicated that for teleosts, the increase in cardiac output (Vb) during exercise is mainly the result of an increase in cardiac stroke volume (V(S)) rather than in heart rate (fH). More recently, this contention has been questioned following studies on animals carrying less instrumentation, though the debate continues. In an attempt to shed more light on the situation, we examined the heart rates and oxygen consumption rates (Mo2; normalised to a mass of 1 kg, given as Mo2kg) of six Murray cod (Maccullochella peelii peelii; mean mass+/-SE = 1.81+/-0.14 kg) equipped with implanted fH and body temperature data loggers. Data were determined during exposure to varying temperatures and swimming speeds to encompass the majority of the biological scope of this species. An increase in body temperature (Tb) from 14 degrees C to 29 degrees C resulted in linear increases in Mo2kg (26.67-41.78 micromol min(-1) kg(-1)) and fH (22.3-60.8 beats min(-1)) during routine exercise but a decrease in the oxygen pulse (the amount of oxygen extracted per heartbeat; 1.28-0.74 micromol beat(-1) kg(-1)). During maximum exercise, the factorial increase in Mo2kg was calculated to be 3.7 at all temperatures and was the result of temperature-independent 2.2- and 1.7-fold increases in fH and oxygen pulse, respectively. The constant factorial increases in fH and oxygen pulse suggest that the cardiovascular variables of the Murray cod have temperature-independent maximum gains that contribute to maximal oxygen transport during exercise. At the expense of a larger factorial aerobic scope at an optimal temperature, as has been reported for species of salmon and trout, it is possible that the Murray cod has evolved a lower, but temperature-independent, factorial aerobic scope as an adaptation to the largely fluctuating and unpredictable thermal climate of southeastern Australia.  相似文献   

8.
We investigated the temperature dependence of some physiological parameters of common eelpout (Zoarces viviparus) from different locations (North Sea, Baltic Sea and Norwegian Sea) on acclimation temperature (3 degrees C and 12 degrees C) and acute temperature variation. The lethal limit of 12 degrees C-acclimated eelpout was determined as the critical thermal maximum [loss of equilibrium (LE) and onset of muscular spasms (OS)] and it was found to be 26.6 degrees C for LE and 28.8 degrees C for OS for all populations. However, these parameters do not have any relevant ecological interpretation. We therefore investigated the effect of gradually increased water temperature on standard metabolic rate (measured as resting oxygen consumption Mo2) and critical oxygen concentration ([O2]c) of eelpouts. Acclimation to low temperature (3 degrees C) resulted in partial compensation of Mo2, paralleled by a decrease of activation energy for Mo2 (from 82 kJ mol(-1) at 12 degrees C to about 50 kJ mol(-1) at 3 degrees C) in North Sea and Baltic Sea eelpouts. At the same time, Norwegian eelpout showed no acclimation of oxygen demand to warm temperature (12 degrees C) at all. The scope for eelpout aerobic metabolism shrank considerably with increased acclimation temperature, as [O2]c approached water oxygen concentrations. At 22.5+/-1 degrees C the [O2]c reached air saturation, which is equivalent to the upper critical temperature (TcII) and at this temperature the aerobic scope for the metabolism completely disappeared. In line with previous insight, the comparative analysis of the temperature dependence of Mo2 of Z. viviparus from different populations suggests that a pejus (sub-critical) temperature for this species is about 13-15 degrees C. In conclusion, the capacity to adjust aerobic metabolism relates to thermal tolerance and the bio-geographical distribution of the species. Global warming would thus be likely to cause a shift in the distribution of this species to the North.  相似文献   

9.
10.
The effects of acclimation temperature (30 degrees, 20 degrees, and 15 degrees C) and swimming speed on the aerobic fuel use of the Nile tilapia (Oreochromis niloticus; 8-10 g, 8-9-cm fork length) were investigated using a respirometric approach. As acclimation temperature was decreased from 30 degrees C to 15 degrees C, resting oxygen consumption (Mo2) and carbon dioxide excretion (Mco2) decreased approximately twofold, while nitrogenous waste excretion (ammonia-N plus urea-N) decreased approximately fourfold. Instantaneous aerobic fuel usage was calculated from respiratory gas exchange. At 30 degrees C, resting Mo2 was fueled by 42% lipids, 27% carbohydrates, and 31% protein. At 15 degrees C, lipid use decreased to 21%, carbohydrate use increased greatly to 63%, and protein use decreased to 16%. These patterns at 30 degrees C and 15 degrees C in tilapia paralleled fuel use previously reported in rainbow trout acclimated to 15 degrees C and 5 degrees C, respectively. Temperature also had a pronounced effect on critical swimming speed (UCrit). Tilapia acclimated to 30 degrees C had a UCrit of 5.63+/-0. 06 body lengths/s (BL/s), while, at 20 degrees C, UCrit was significantly lower at 4.21+/-0.14 BL/s. Tilapia acclimated to 15 degrees C were unable or unwilling to swim. As tilapia swam at greater speeds, Mo2 increased exponentially; Mo2min and Mo2max were 5.8+/-0.6 and 21.2+/-1.5 micromol O2/g/h, respectively. Nitrogenous waste excretion increased to a lesser extent with swimming speed. At 30 degrees C, instantaneous protein use while swimming at 15 cm/s ( approximately 1.7 BL/s) was 23%, and at UCrit (5.6 BL/s), protein use dropped slightly to 17%. During a 48-h swim at 25 cm/s (2.7 BL/s, approximately 50% UCrit), Mo2 and urea excretion remained unchanged, while ammonia excretion more than doubled by 24 h and remained elevated 24 h later. These results revealed a shift to greater reliance on protein as an aerobic fuel during prolonged swimming.  相似文献   

11.
In skeletal muscle, intracellular Po2 can fall to as low as 2-3 mmHg. This study tested whether oxygen regulates cellular respiration in this range of oxygen tensions through direct coupling between phosphorylation potential and intracellular Po2. Oxygen may also behave as a simple substrate in cellular respiration that is near saturating levels over most of the physiological range. A novel optical spectroscopic method was used to measure tissue oxygen consumption (Mo2) and intracellular Po2 using the decline in hemoglobin and myoglobin saturation in the ischemic hindlimb muscle of Swiss-Webster mice. 31P magnetic resonance spectroscopic determinations yielded phosphocreatine concentration ([PCr]) and pH in the same muscle volume. Intracellular Po2 fell to <2 mmHg during the ischemic period without a change in the muscle [PCr] or pH. The constant phosphorylation state despite the decline in intracellular Po2 rejects the hypothesis that direct coupling between these two variables results in a regulatory role for oxygen in cellular respiration. A second set of experiments tested the relationship between intracellular Po2 and Mo2. In vivo Mo2 in mouse skeletal muscle was increased by systemic treatment with 2 and 4 mg/kg body wt 2,4-dinitrophenol to partially uncouple mitochondria. Mo2 was not dependent on intracellular Po2 above 3 mmHg in the three groups despite a threefold increase in Mo2. These results indicate that Mo2 and the phosphorylation state of the cell are independent of intracellular Po2 throughout the physiological range of oxygen tensions. Therefore, we reject a regulatory role for oxygen in cellular respiration and conclude that oxygen acts as a simple substrate for respiration under physiological conditions.  相似文献   

12.
The peptide N-Boc-L-Phe-dehydro-Leu-L-Val-OCH3 was synthesized by the usual workup procedure and finally by coupling the N-Boc-L-Phe-dehydro-Leu-OH to valine methyl ester. It was crystallized from its solution in methanol-water mixture at 4 degrees C. The crystals belong to the triclinic space group P1 with a = 5.972(5) A, b = 9.455(6) A, c = 13.101(6) A, alpha = 103.00(4) degrees, beta = 97.14(5) degrees, gamma = 102.86(5) degrees, V = 690.8(8) A, Z = 1, dm = 1.179(5) Mg m-3 and dc = 1.177(5) Mg m-3. The structure was determined by direct methods using SHELXS86. It was refined by block-diagonal least-squares procedure to an R value of 0.060 for 1674 observed reflections. The C alpha 2-C beta 2 distance of 1.323(9) A in dehydro-Leu is an appropriate double bond length. The bond angle C alpha-C beta-C gamma in the dehydro-Leu residue is 129.4(8) degrees. The peptide backbone torsion angles are theta 1 = -168.6(6) degrees, omega 0 = 170.0(6) degrees, phi 1 = -44.5(9) degrees, psi 1 = 134.5(6) degrees, omega 1 = 177.3(6) degrees, phi 2 = 54.5(9) degrees, psi 2 = 31.1(10) degrees, omega 2 = 171.7(6) degrees, phi 3 = 51.9(8) degrees, psi T3 = 139.0(6) degrees, theta T = -175.7(6) degrees. These values show that the backbone adopts a beta-turn II conformation. As a result of beta-turn, an intramolecular hydrogen bond is formed between the oxygen of the ith residue and NH of the (i + 3)th residue at a distance of 3.134(6) A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Elevated Mg(2+) levels in the hemolymph ([Mg(2+)](HL)) of brachyuran crabs have recently been demonstrated to limit cold tolerance by reducing motor and circulatory activity. Therefore, the limiting function of elevated [Mg(2+)](HL) on circulatory performance and arterial hemolymph flow was investigated by the pulsed-Doppler technique in the spider crab Maja squinado during progressive cooling from 12 degrees to 0 degrees C. [Mg(2+)](HL) were reduced from control levels of 39.9 mmol L(-1) to levels of 6.1 mmol L(-1) by incubation in magnesium reduced seawater. At 12 degrees C cardiac output was 13.9+/-2.4 mL kg(-1) min(-1) and stroke volume 0.2+/-0.04 mL kg(-1) min(-1) in control animals. In [Mg(2+)](HL)-reduced animals cardiac output increased to 43.6+/-5.0 mL kg(-1) min(-1) and stroke volume rose to 0.6+/-0.1 mL kg(-1) min(-1). Temperature reduction in control animals revealed a break point at 8 degrees C linked to a major redirection of hemolymph flow from lateral to sternal and hepatic arteries. Cardiac output and heart rate dropped sharply during cooling until transiently constant values were reached. Further heart rate reduction occurred below 4.5 degrees C. Such a plateau was not detected in [Mg(2+)](HL)-reduced animals where the break point decreased to 6 degrees C, also indicated by a sharp drop in heart rate and cardiac output and the redirection of hemolymph flow. It is concluded that progressive cooling brings the animals from a temperature range of optimum cardiac performance into a deleterious range when aerobic scope for activity falls before critical temperatures are reached. Reduction of [Mg(2+)](HL) shifts this transition to lower temperatures. These findings support a limiting role for [Mg(2+)](HL) in thermal tolerance.  相似文献   

14.
R Feng  X Zhou  PM Or  JY Ma  XS Tan  J Fu  C Ma  JG Shi  CT Che  Y Wang  JH Yeung 《Phytomedicine》2012,19(12):1125-1133
Halenia elliptica D. Don is a Tibetan herb and medicinal preparations containing Halenia elliptica have been commonly used for the treatment of hepatitis B virus infection in China. The metabolism of 1-hydroxy-2,3,5-trimethoxy-xanthone (HM-1) to its metabolites is mediated through cytochrome P450 enzymes. This study aimed to investigate the herb-drug interaction potential of HM-1 by studying its effects on the metabolism of model probe substrates of five major CYP450 isoforms in human liver microsomes. HM-1 showed moderate inhibitory effects on CYP1A2 (IC(50)=1.06μM) and CYP2C9 (IC(50)=3.89μM), minimal inhibition on CYP3A4 (IC(20)=11.94μM), but no inhibition on model CYP2D6 (dextromethorphan) and CYP2E1 (chlorzoxazone) probe substrates. Inhibition kinetic studies showed that the K(i) values of HM-1 on CYP1A2, CYP2C9 and CYP3A4 were 5.12μM, 2.00μM and 95.03μM, respectively. HM-1 competitively inhibited testosterone 6β-hydroxylation (CYP3A4) but displayed mixed type inhibitions for phenacetin O-deethylation (CYP1A2) and tolbutamide 4-hydroxylation (CYP2C9). Molecular docking study confirmed the inhibition modes of HM-1 on these human CYP isoforms.  相似文献   

15.
Formation of reactive oxygen species (ROS) in mitochondrial isolates from gill tissues of the Antarctic polar bivalve Laternula elliptica was measured fluorimetrically under in vitro conditions. When compared to the rates measured at habitat temperature (1 degrees C), significantly elevated ROS formation was found under temperature stress of 7 degrees C and higher. ROS formation correlated significantly with oxygen consumption in individual mitochondrial preparations over the entire range of experimental temperatures (1-12 degrees C). ROS generation per mg of mitochondrial protein was significantly higher in state 3 at maximal respiration and coupling to energy conservation, than in state 4+, where ATPase-activity is inhibited by oligomycin and only proton leakage is driving the residual oxygen consumption. The percent conversion of oxygen to the membrane permeant hydrogen peroxide amounted to 3.7% (state 3) and 6.5% (state 4+) at habitat temperature (1 degrees C), and to 7% (state 3) and 7.6% (state 4+) under experimental warming to 7 degrees C. This is high compared to 1-3% oxygen to ROS conversion in mammalian mitochondrial isolates and speaks for a comparatively low control of toxic oxygen formation in mitochondria of the polar bivalve. However, low metabolic rates at cold Antarctic temperatures keep absolute rates of mitochondrial ROS production low and control oxidative stress at habitat temperatures. Mitochondrial coupling started to fall beyond 3 degrees C, closely to pejus temperature (4 degrees C) of the bivalve. Accordingly, the proportion of state 4 respiration increased from below 30% at 1 degrees C to over 50% of total oxygen consumption at 7 degrees C, entailing reduced ADP/O ratios under experimental warming. Progressive mitochondrial uncoupling and formation of hazardous ROS contribute to bias mitochondrial functioning under temperature stress in vitro. Deduced from a pejus temperature, heat stress commences already at 5 degrees C, and is linked to progressive loss of phosphorylation efficiency, increased mitochondrial oxygen demand and elevated oxidative stress above pejus temperatures.  相似文献   

16.
Extant abalone retain an ancestral system of gas exchange consisting of paired bipectinate gills. This paper examines the hypothesis that fundamental inefficiencies of this arrangement led to the extensive radiation observed in prosobranch gas exchange organs. Oxygen uptake at 15 degrees C was examined in the right gill of resting adult blackfoot abalone, Haliotis iris Martyn 1784. Pre- and post-branchial haemolymph and water were sampled and oxygen content, partial pressure (Po2), pH, and haemocyanin content measured; in vivo haemolymph flow rate was determined by an acoustic pulsed-Doppler flowmeter. During a single pass across the gills, mean seawater Po2 fell from 138.7 Torr to 83.4 Torr, while haemolymph Po2 rose from 37.2 Torr to 77.0 Torr raising total O2 content from 0.226 to 0.346 mmol L(-1). Haemolymph flowed through the right gill at a mean rate of 9.6 mL min(-1) and carried 0.151 to 0.355 mmol L(-1) of haemocyanin (mean body mass 421 g). Only 34.7% of the oxygen carried in the arterial haemolymph was taken up by the tissues and less than half of this was contributed by haemocyanin. A diffusion limitation index (Ldiff) of 0.47-0.52, a well-matched ventilation-perfusion ratio (1.2-1.4) and a diffusing capacity (D) of 0.174 micromol O2 kg(-1) Torr(-1) indicate that the gills operate efficiently and are able to meet the oxygen requirements of the resting abalone.  相似文献   

17.
Superoxide anion (O(-) (2)) and nitric oxide (NO) generation in Dactylopius coccus hemolymph obtained by perfusion and activated with zymosan was studied. Activated hemolymph reduced 3-[4,5 dimethylthiazolil-2]-2,5-diphenyl tetrazolium bromide. This reduction was prevented by superoxide dismutase (SOD) indicating O(-) (2) generation. This activity was dependent on temperature, and hemolymph incubated at 75 degrees C lost its activity. Chromatocytes incubated with zymosan released their content and produced O(-) (2). Activated hemolymph also produced NO and this activity was prevented in the presence of NG-nitro-L-arginine methyl ester, suggesting that nitric oxide synthase (NOS) might be present in D. coccus hemolymph. The probable source of O(-) (2) in the D. coccus hemolymph is the anthraquinone oxidation, since commercial carminic dye produced O(-) (2) during its oxidation by Agaricus bisporus tyrosinase. Gram+ Micrococcus luteus exposed to activated hemolymph were killed in vitro, and addition of NG-nitro-L-arginine methyl ester and D-Mannitol (a hydroxyl radical scavenger) prevented their killing. The cytotoxic effect produced by the activated hemolymph was not observed with the Gram- bacteria Serratia marcescens. These results suggest that D. coccus activated hemolymph generates reactive oxygen intermediates (ROI) and reactive nitrogen intermediates (RNI) that may limit M. luteus growth.  相似文献   

18.
We examined the effect of temperature on resting metabolic rate in seven field-captured laughing kookaburras (Dacelo novaeguineae) during late winter and early spring. Basal metabolic rate averaged 201+/-3.4 ml O(2) h(-1) (0.603 ml O(2) g(-1) h(-1)). Overall thermal conductance (K(o)) declined with ambient temperature ( T(a)) and averaged 0.026 ml O(2) g(-1) h(-1) degrees C(-1) at T(a)s<10 degrees C. Day-night differences in body temperatures (2.6 degrees C) and in alpha-phase versus rho-phase minimum metabolic rates were much greater (33%) than predicted for 340-g nonpasserine birds and suggest that these animals operate as low-metabolic intensity animals in their rest phase, but normal-metabolic intensity animals during their active phase. Metabolic rate was measured in four of the same birds undergoing moult. Thermal conductance increased to 60% above pre-moult values about 6 weeks after moult began. Basal metabolic rate of moulting birds showing peak thermal conductance readings averaged 17 ml O(2) h(-1) higher than pre-moult measurements. Although this increase was not statistically significant, we believe the moult costs of kookaburras are too low to overcome the inherent variability of BMR determination. We suggest that moult costs of kookaburras are only somewhat higher than the measured costs of protein synthesis of other endotherms.  相似文献   

19.
Increased formation of reactive oxygen species (ROS) on reperfusion after ischemia underlies ischemia-reperfusion (I/R) damage. We measured, in real time, oxygen tension in both microvessels and tissue and oxidant stress during postischemic reperfusion in the hamster cheek pouch microcirculation. We measured Po2 by using phosphorescence quenching microscopy and ROS production in the systemic blood. We evaluated the effects of a nitric oxide synthase inhibitor (NG-monomethyl-L-arginine, L-NMMA) and SOD on the oxidative stress during reperfusion. Microvascular injury was assessed by measuring diameter change, the perfused capillary length (PCL), and leukocyte adhesion. During early reperfusion, arteriolar Po2 was significantly lower than baseline, whereas capillary Po2 varied between 7 and 0 mmHg. Arterial blood flow did not regain baseline values, whereas Po2 returned to baseline in arterioles and tissue after 30 min of reperfusion. During 5 and 15 min of reperfusion, ROS increased by 72 and 89% versus baseline, respectively, and declined to baseline after 30 min of reperfusion. Pretreatment with SOD maintained ROS at normal levels, increased arteriolar diameter, blood flow, and PCL, and decreased leukocyte adhesion (P < 0.05). L-NMMA decreased ROS only within 5 min of reperfusion, which increased significantly by 72% later during reperfusion. L-NMMA worsened leukocyte adhesion (P < 0.05). In conclusion, our results show that the early reperfusion is characterized by low Po2 linked to increased production of ROS. At early reperfusion both SOD and L-NMMA decreased ROS production, whereas only SOD reduced it during later reperfusion. We suggest that low-flow hypoxia profoundly affects vascular endothelial damage during reperfusion through changes in ROS and nitric oxide production.  相似文献   

20.
The currents through single Ca2+-activated K+ channels were studied in excised inside-out membrane patches of human erythrocytes. The effects of temperature on single-channel conductance, on channel gating and on activation by Ca2+ were investigated in the temperature range from 0 up to 47 degrees C. The single-channel conductance shows a continuous increase with increasing temperature; an Arrhenius plot of the conductance gives the activation energy of 29.6 +/- 0.4 kJ/mol. Reducing the temperature alters channel-gating kinetics which results in a significant increase of the probability of the channel being open (Po). The calcium dependence of Po is affected by temperature in different ways; the threshold concentration for activation by Ca2+ is not changed, the Ca2+ concentration of half-maximal channel activation is reduced from 2.1 mumol/l at 20 degrees C to 0.3 mumol/l at 0 degrees C, the saturation level of the dependence is reduced for temperatures higher then about 30 degrees C. The relevance of the obtained data for the interpretation of the results known from flux experiments on cells in suspensions is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号