首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The recent torrent of structures of chromatin complexes determined by cryoelectron microscopy provides an opportunity to discern general principles for how chromatin factors and enzymes interact with their nucleosome substrate. We find that many chromatin proteins use a strikingly similar arginine anchor and variant arginine interactions to bind to the nucleosome acidic patch. We also observe that many chromatin proteins target the H3 and H2B histone fold α1-loop1 elbows and the H2B C-terminal helix on the nucleosomal histone face. These interactions with the histones can be complemented with interactions with and distortions of nucleosomal DNA.  相似文献   

3.
Abstract

Recent studies of genome-wide nucleosomal organization suggest that the DNA sequence is one of the major determinants of nucleosome positioning. Although the search for underlying patterns encoded in nucleosomal DNA has been going on for about 30 years, our knowledge of these patterns still remains limited. Based on our evaluations of DNA deformation energy, we developed new scoring functions to predict nucleosome positioning. There are three principal differences between our approach and earlier studies: (i) we assume that the length of nucleosomal DNA varies from 146 to 147 bp; (ii) we consider the anisotropic flexibility of pyrimidine-purine (YR) dimeric steps in the context of their neighbors (e.g., YYRR versus RYRY); (iii) we postulate that alternating AT-rich and GC-rich motifs reflect sequence-dependent interactions between histone arginines and DNA in the minor groove. Using these functions, we analyzed 20 nucleosome positions mapped in vitro at single nucleotide resolution (including clones 601, 603, 605, the pGUB plasmid, chicken β-globin and three 5S rDNA genes). We predicted 15 of the 20 positions with 1-bp precision, and two positions with 2-bp precision. The predicted position of the ‘601’ nucleosome (i.e., the optimum of the computed score) deviates from the experimentally determined unique position by no more than 1 bp—an accuracy exceeding that of earlier predictions.

Our analysis reveals a clear heterogeneity of the nucleosomal sequences which can be divided into two groups based on the positioning ‘rules’ they follow. The sequences of one group are enriched by highly deformable YR/YYRR motifs at the minor-groove bending sites SHL ±3.5 and ±5.5, which is similar to the α-satellite sequence used in most crystallized nucleosomes. Apparently, the positioning of these nucleosomes is determined by the interactions between histones H2A/H2B and the terminal parts of nucleosomal DNA. In the other group (that includes the ‘601’ clone) the same YR/YYRR motifs occur predominantly at the sites SHL ±1.5. The interaction between the H3/H4 tetramer and the central part of the nucleosomal DNA is likely to be responsible for the positioning of nucleosomes of this group, and the DNA trajectory in these nucleosomes may differ in detail from the published structures.

Thus, from the stereochemical perspective, the in vitro nucleosomes studied here follow either an X-ray-like pattern (with strong deformations in the terminal parts of nucleosomal DNA), or an alternative pattern (with the deformations occurring predominantly in the central part of the nucleosomal DNA). The results presented here may be useful for genome-wide classification of nucleosomes, linking together structural and thermodynamic characteristics of nucleosomes with the underlying DNA sequence patterns guiding their positions.  相似文献   

4.
The ability of DNA-binding proteins to recognize their cognate sites in chromatin is restricted by the structure and dynamics of nucleosomal DNA, and by the translational and rotational positioning of the histone octamer. Here, we use six different pyrrole-imidazole polyamides as sequence-specific molecular probes for DNA accessibility in nucleosomes. We show that sites on nucleosomal DNA facing away from the histone octamer, or even partially facing the histone octamer, are fully accessible and that nucleosomes remain fully folded upon ligand binding. Polyamides only failed to bind where sites are completely blocked by interactions with the histone octamer. Removal of the amino-terminal tails of either histone H3 or histone H4 allowed these polyamides to bind. These results demonstrate that much of the DNA in the nucleosome is freely accessible for molecular recognition in the minor groove, and also support a role for the amino-terminal tails of H3 and H4 in modulating accessibility of nucleosomal DNA.  相似文献   

5.
Changes in chromatin structure, histone phosphorylation and cleavage of DNA into nucleosome-size fragments are characteristic features of apoptosis. Since H1 histones bind to the site of DNA cleavage between nucleosomal cores, the question arises as to whether the state of H1 phosphorylation influences the rate of internucleosomal cleavage. Here, we tested the relation between DNA fragmentation and H1 phosphorylation both in cultured cells and in vitro. In Jurkat cells, hyperosmotic mannitol concentration resulted in apoptosis, including nucleosomal fragmentation, whereas apoptosis induction by increased NaCl concentration was not accompanied by DNA fragmentation. However, both treatments induced dephosphorylation of H1 histones. In contrast, treatment of Raji cells with alkylphosphocholine led to induction of apoptosis with internucleosomal fragmentation, albeit without notable histone H1 dephosphorylation. These results demonstrate that dephosphorylation of H1 histones is neither a prerequisite for nor a consequence of internucleosomal cleavage. Moreover, we observed with an in vitro assay that the known enhancing effect of H1 histones on the activity of the apoptosis-induced endonuclease DFF40 is independent of the subtype or the phosphorylation state of the linker histone.  相似文献   

6.
The sequential arrangement of histones along DNA in nucleosomes containing all five histones and DNA about 165 and 175 base-pairs in length has been determined. The data provide evidence that core histones (H2A, H2B, H3 and H4) are arranged in nucleosomes and nucleosome core particles in a largely similar way with the following differences. (1) On nucleosomal DNA about 175 basepairs long core histones are probably shifted by 20 nucleotides on one DNA strand and by 10 nucleotides on the complementary DNA strand from the 5′ end. On nucleosomal DNA 165 base-pairs long, histones appear to be shifted by 10 nucleotides from the 5′ end of DNA on both the DNA strands. (2) Histone H3 is extended beyond core DNA and is bound to the 3′ end of DNA about 175 nucleotides long. Thus, core histones span the whole length of nucleosomal DNA. (3) Histone H2A seems to be absent from the central region of nucleosomal DNA. These results indicate that during the preparation of core particles, some rearrangement of histones or some of their regions occurs.Histone H1 has been shown to be bound mainly to the ends of nucleosomal DNA and, along the whole DNA length, to the gap regions that are free of core histones.  相似文献   

7.
J Jordano  F Montero  E Palacián 《Biochemistry》1984,23(19):4280-4284
Modification of nucleosomal particles from chicken erythrocytes with the reagents for protein amino groups acetic and dimethylmaleic anhydrides causes a rearrangement of nucleosomal components. Treatment with both reagents is accompanied by liberation of free DNA and formation of residual particles with anomalous histone composition. The residual particles obtained with acetic anhydride contain an excess of histones corresponding to the free DNA produced. In contrast, dimethylmaleic anhydride causes release of histones H1, H5, H2A and H2B and formation of residual particles deficient in these histones but containing an excess of H3 and H4 corresponding to the liberated DNA. Regeneration of the modified amino groups of nucleosomal preparations treated with dimethylmaleic anhydride is accompanied by reconstitution of nucleosomal particles with the sedimentation coefficient and composition of core histones of the original nucleosomes. This reconstitution does not occur when the released fraction containing histones H2A and H2B and free DNA is separated from the residual particles. The studied disassembly of nucleosomal particles obtained by specifically blocking lysine-DNA interactions with these reagents appears to indicate that lysine residues are essential for the binding of DNA to histones with formation of nucleosomal particles.  相似文献   

8.
To facilitate the biochemical characterization of chromatin-associated proteins in the budding yeast Saccharomyces cerevisiae, we have developed a system to assemble nucleosomal arrays on immobilized templates using recombinant yeast core histones. This system enabled us to analyze the interaction of Isw2 ATP-dependent chromatin remodeling complex with nucleosomal arrays. We found that Isw2 complex interacts efficiently with both naked DNA and nucleosomal arrays in an ATP-independent manner, suggesting that ATP is required at steps subsequent to this physical interaction. We identified the second subunit of Isw2 complex, encoded by open reading frame YGL 133w (herein named ITC1), and found that both subunits of the complex, Isw2p and Itc1p, are essential for efficient interaction with DNA and nucleosomal arrays. Both subunits are also required for nucleosome-stimulated ATPase activity and chromatin remodeling activity of the complex. Finally, we found that ITC1 is essential for function of Isw2 complex in vivo, since isw2 and itc1 deletion mutants exhibit virtually identical phenotypes. These results demonstrate the utility of our in vitro system in studying interactions between chromatin-associated proteins and nucleosomal arrays.  相似文献   

9.
The theoretical analysis of nucleosome stability at low ionic strength has been performed on the basis of consideration of different contributions to the free energy of compact state of the nucleosome DNA terminal regions. The proposed model explains: the fact of low-salt structural change; the transition point (approximately 1.7 mM NaCl) and width (approximately 1 mM); the shift of the transition to the higher salt concentrations in the case of histones tails removal by trypsin. According to the model the increase of electrostatic repulsion between neighbouring turns of DNA superhelix is the main cause of the unwinding of nucleosomal DNA terminal regions in the course of low-salt structural change. The interactions between histone (H2A-H2B) dimer and (H3-H4)2 tetramer provide the compact state of the nucleosomal DNA terminal regions. The existence of electrostatic interactions of nucleosomal DNA terminal regions with tetramer was suggested. These interactions can provide the compact state of nucleosomal DNA at physiological ionic strength even in the absence of (H2A-H2B) dimer.  相似文献   

10.
In eukaryotic nuclei the majority of genomic DNA is believed to exist in higher order chromatin structures. Nonetheless, the nature of direct, long range nucleosome interactions that contribute to these structures is poorly understood. To determine whether these interactions are directly mediated by contacts between the histone H4 amino-terminal tail and the acidic patch of the H2A/H2B interface, as previously demonstrated for short range nucleosomal interactions, we have characterized the extent and effect of disulfide cross-linking between residues in histones contained in different strands of nucleosomal arrays. We show that in 208-12 5 S rDNA and 601-177-12 nucleosomal array systems, direct interactions between histones H4-V21C and H2A-E64C can be captured. This interaction depends on the extent of initial cross-strand association but does not require these specific residues, because interactions with residues flanking H4-V21C can also be captured. Additionally, we find that trapping H2A-H4 intra-array interactions antagonizes the ability of these arrays to undergo intermolecular self-association.  相似文献   

11.
Elucidating how the metazoan genome is organised into distinct functional domains is fundamental to understanding all aspects of normal cellular growth and development. The "histone code" hypothesis predicts that post-translational modifications of specific histone residues regulate genomic function by selectively recruiting nuclear factors that modify chromatin structure. A paradigm supporting this hypothesis is the preferential binding of the silencing protein heterochromatin protein 1 (HP1) to histone H3 trimethylated at K9. However, a caveat to several in vitro studies is that they employed histone N-terminal tail peptides to determine dissociation constants, thus ignoring any potential role of DNA and/or the underlying chromatin structure in the recruitment of HP1. Using a well-defined in vitro chromatin assembly system (employing a 12-208 DNA template), we describe here, the use of a fluorescence spectroscopic method that enabled us to measure and quantify the relative binding affinities of HP1alpha to unmodified and variant nucleosomal arrays. Using this approach, we previously demonstrated that mouse HP1alpha (i) binds with high affinity to naked DNA, (ii) has an intrinsic affinity for highly folded chromatin, (iii) has a 2-fold higher affinity for nucleosomal arrays when H2A is replaced with H2A.Z, and (iv) binds to DNA or chromatin in a non-cooperative manner.  相似文献   

12.
13.
Heterochromatin protein 1 (HP1) is a nonhistone chromosomal protein primarily associated with the pericentric heterochromatin and telomeres in Drosophila. The molecular mechanism by which HP1 specifically recognizes and binds to chromatin is unknown. The purpose of this study was to test whether HP1 can bind directly to nucleosomes. HP1 binds nucleosome core particles and naked DNA. HP1-DNA complex formation is length-dependent and cooperative but relatively sequence-independent. We show that histone H4 amino-terminal peptides bind to monomeric and dimeric HP1 in vitro. Acetylation of lysine residues had no significant effect on in vitro binding. The C-terminal chromo shadow domain of HP1 specifically binds H4 N-terminal peptide. Neither the chromo domain nor chromo shadow domain alone binds DNA; intact native HP1 is required for such interactions. Together, these observations suggest that HP1 may serve as a cross-linker in chromatin, linking nucleosomal DNA and nonhistone protein complexes to form higher order chromatin structures.  相似文献   

14.
Bromodomains (BrDs), a conserved structural module in chromatin-associated proteins, are well known for recognizing ε-N-acetyl lysine residues on histones. One of the most relevant BrDs is BRD4, a tandem BrD containing protein (BrD1 and BrD2) that plays a critical role in numerous diseases including cancer. Growing evidence shows that the two BrDs of BRD4 have different biological functions; hence selective ligands that can be used to study their functions are of great interest. Here, as a follow-up of our previous work, we first provide a detailed characterization study of the in silico rational design of Olinone as part of a series of five tetrahydropyrido indole-based compounds as BRD4 BrD1 inhibitors. Additionally, we investigated the molecular basis for Olinone's selective recognition by BrD1 over BrD2. Molecular dynamics simulations, free energy calculations, and conformational analyses of the apo-BRD4-BrD1|2 and BRD4-BrD1|2/Olinone complexes showed that Olinone's selectivity is facilitated by five key residues: Leu92 in BrD1|385 in BrD2 of ZA loop, Asn140|433, Asp144|His437 and Asp145|Glu438 of BC loop, and Ile146|Val49 of helix C. Furthermore, the difference in hydrogen bonds number and in mobility of the ZA and BC loops of the acetyl-lysine binding site between BRD4 BrD1/Olinone and BrD2/Olinone complexes also contribute to the difference in Olinone's binding affinity and selectivity toward BrD1 over BrD2. Altogether, our computer-aided molecular design techniques can effectively guide the development of small-molecule BRD4 BrD1 inhibitors, explain their selectivity origin, and further open doors to the design of new therapeutically improved derivatives.  相似文献   

15.
The experiments on reconstruction of chromatin (without H1) from DNA and histone octamer containing either H2B from sea urchin sperm (H2B-S) or H2B from calf thymus are reported. It has been shown that H2B-S affects the mode of interaction of histones with DNA during the reconstitution of nucleosomal particles on one hand and on the other hand H2B-S plays a major role in the interactions of reconstituted mononucleosomes. These interactions result in supranucleosomal structures.  相似文献   

16.
Laser Raman spectra of calf thymus chromatin and its constituents.   总被引:2,自引:1,他引:1  
Extensive Raman measurements have been made on calf thymus chromatin, core chromatin, the (H3,H4)/DNA complex, and isolated DNA. The results indicate that the alpha-helical content of the nucleosomal histones gradually increases as they form the heterocomplexes that lead to the formation of the octameric nucleosome core. The secondary structure of the latter is not modified as it binds to DNA. The spectra indicate that the DNA essentially retains its B conformation in nucleosomes, although slight changes probably occur in the ribose-phosphate backbone. No specific interactions between the nucleosomal histones and DNA can be established from the spectra, but histone H1 possibly interacts selectively with the thymine bases.  相似文献   

17.
The Tetrahymena thermophila ribosomal DNA (rDNA) replicon contains dispersed cis-acting replication determinants, including reiterated type I elements that associate with sequence-specific, single-stranded binding factors, TIF1 through TIF4. Here, we show that TIF4, previously implicated in cell cycle-controlled DNA replication and rDNA gene amplification, is the T. thermophila origin recognition complex (TtORC). We further demonstrate that TtORC contains an integral RNA subunit that participates in rDNA origin recognition. Remarkably, this RNA, designated 26T, spans the terminal 282 nts of 26S ribosomal RNA. 26T RNA exhibits extensive complementarity to the type I element T-rich strand and binds the rDNA origin in vivo. Mutations that disrupt predicted interactions between 26T RNA and its complementary rDNA target change the in vitro binding specificity of ORC and diminish in vivo rDNA origin utilization. These findings reveal a role for ribosomal RNA in chromosome biology and define a new mechanism for targeting ORC to replication initiation sites.  相似文献   

18.
19.
Multiscale modeling of nucleosome dynamics   总被引:3,自引:1,他引:2       下载免费PDF全文
Nucleosomes form the fundamental building blocks of chromatin. Subtle modifications of the constituent histone tails mediate chromatin stability and regulate gene expression. For this reason, it is important to understand structural dynamics of nucleosomes at atomic levels. We report a novel multiscale model of the fundamental chromatin unit, a nucleosome, using a simplified model for rapid discrete molecular dynamics simulations and an all-atom model for detailed structural investigation. Using a simplified structural model, we perform equilibrium simulations of a single nucleosome at various temperatures. We further reconstruct all-atom nucleosome structures from simulation trajectories. We find that histone tails bind to nucleosomal DNA via strong salt-bridge interactions over a wide range of temperatures, suggesting a mechanism of chromatin structural organization whereby histone tails regulate inter- and intranucleosomal assemblies via binding with nucleosomal DNA. We identify specific regions of the histone core H2A/H2B-H4/H3-H3/H4-H2B/H2A, termed “cold sites”, which retain a significant fraction of contacts with adjoining residues throughout the simulation, indicating their functional role in nucleosome organization. Cold sites are clustered around H3-H3, H2A-H4 and H4-H2A interhistone interfaces, indicating the necessity of these contacts for nucleosome stability. Essential dynamics analysis of simulation trajectories shows that bending across the H3-H3 is a prominent mode of intranucleosomal dynamics. We postulate that effects of salts on mononucleosomes can be modeled in discrete molecular dynamics by modulating histone-DNA interaction potentials. Local fluctuations in nucleosomal DNA vary significantly along the DNA sequence, suggesting that only a fraction of histone-DNA contacts make strong interactions dominating mononucleosomal dynamics. Our findings suggest that histone tails have a direct functional role in stabilizing higher-order chromatin structure, mediated by salt-bridge interactions with adjacent DNA.  相似文献   

20.
In this work we have studied the effect of chromatin structure on the base excision repair (BER) efficiency of 8-oxoG. As a model system we have used precisely positioned dinucleosomes assembled with linker histone H1. A single 8-oxoG was inserted either in the linker or the core particle DNA within the dinucleosomal template. We found that in the absence of histone H1 the glycosylase OGG1 removed 8-oxoG from the linker DNA and cleaved DNA with identical efficiency as in the naked DNA. In contrast, the presence of histone H1 resulted in close to 10-fold decrease in the efficiency of 8-oxoG initiation of repair in linker DNA independently of linker DNA length. The repair of 8-oxoG in nucleosomal DNA was very highly impeded in both absence and presence of histone H1. Chaperone-induced uptake of H1 restored the efficiency of the glycosylase induced removal of 8-oxoG from linker DNA, but not from the nucleosomal DNA. We show, however, that removal of histone H1 and nucleosome remodelling are both necessary and sufficient for an efficient removal of 8-oxoG in nucleosomal DNA. Finally, a model for BER of 8-oxoG in chromatin templates is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号