首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RAPD markers for constructing intraspecific tomato genetic maps   总被引:8,自引:0,他引:8  
The existing molecular genetic maps of the tomato, Lycopersicon spp, are constructed based on isozyme and RFLP polymorphisms between tomato species. These maps are useful for certain applications but have few markers that exhibit sufficient polymorphisms for intraspecific analysis and manipulations within the cultivated tomato. The purpose of this study was to investigate the relative potential of RAPD technology, as compared to isozymes and RFLPs, to generate polymorphic DNA markers within cultivated tomatoes. Sixteen isozymes and 25 RFLP clones that were known to detect polymorphism between L. esculentum and L. pennellii, and 313 random oligonucleotide primers were examined. None of the isozymes and only four of the RFLP clones (i.e., 16%) revealed polymorphism between the cultivated varieties whereas up to 63% of the RAPD primers detected one or more polymorphic DNA fragments between these varieties. All RAPD primers detected polymorphism between L. esculentum and L. pennellii genotypes. These results clearly indicate that RAPD technology can generate sufficient genetic markers exploiting sequence differences within cultivated tomatoes to facilitate construction of intraspecific genetic maps.Abbreviations RFLP restriction fragments length polymorphism - RAPD random amplified polymorphic DNA - PCR polymerase chain reaction - QTLs quantitative trait loci  相似文献   

2.
We report the tagging of a powdery mildew [Leveillula taurica (Lév.) Arnaud.] resistance gene (Lv) in tomato using RAPD and RFLP markers. DNA from a resistant (cv Laurica) and a susceptible cultivar were screened with 300 random primers that were used to amplify DNA of resistant and susceptible plants. Four primers yielded fragments that were unique to the resistant line and linked to the resistance gene in an F2 population. One of these amplified fragments, OP248, with a molecular weight of 0.7 kb, was subsequently mapped to chromosome 12, 1 cM away from CT134. Using RFLP markers located on chromosome 12, it was shown that approximately one half of chromosome 12 (about 42 cM), in the resistant variety is comprised of foreign DNA, presumably introgressed with the resistance gene from the wild species L. chilense. Further analysis of a backcross population revealed that the Lv gene lies in the 5.5-cM interval between RFLP markers, CT211 and CT219. As a prelude to map-based cloning of the Lv gene, we are currently enriching the density of markers in this region by a combination of RAPD primers and other techniques.  相似文献   

3.
A set of 24 simple PCR markers was generated for tomato chromosomes 9, 10, 11 and 12. Polymorphism was sought for between Lycopersicon esculentum and one of six other Lycopersicon species (L. parviflorum, L. cheesmanii, L. hirsutum, L. pennellii, L. peruvianum, and L. chilense). PCR primers, which were designed from mapped RFLP sequences, were used to amplify genomic DNA of the different species and the PCR amplification products were screened for polymorphism by testing restriction enzymes. With this approach, 24 (71%) of the 34 selected RFLPs were converted into simple PCR markers. By using a reference population, the map positions of these markers relative to the original RFLP markers were verified. These markers are locus specific and can be efficiently used for alignment of linkage maps, mapping target genes and marker assisted selection.  相似文献   

4.
Restriction fragment length polymorphism (RFLP) and random amplified polymorphic DNA (RAPD) markers are being used widely for evaluating genetic relationships of crop germplasm. Differences in the properties of these two markers could result in different estimates of genetic relationships among some accessions. Nuclear RFLP markers detected by genomic DNA and cDNA clones and RAPD markers were compared for evaluating genetic relationships among 18 accessions from six cultivated Brassica species and one accession from Raphanus sativus. Based on comparisons of genetic-similarity matrices and cophenetic values, RAPD markers were very similar to RFLP markers for estimating intraspecific genetic relationships; however, the two marker types gave different results for interspecific genetic relationships. The presence of amplified mitochondrial and chloroplast DNA fragments in the RAPD data set did not appear to account for differences in RAPD- and RFLP-based dendrograms. However, hybridization tests of RAPD fragments with similar molecular weights demonstrated that some fragments, scored as identical, were not homologous. In all these cases, the differences occurred at the interspecific level. Our results suggest that RAPD data may be less reliable than RFLP data when estimating genetic relationships of accessions from more than one species.  相似文献   

5.
Accessions of the wild tomato species L. peruvianum were screened with a root-knot nematode population (557R) which infects tomato plants carrying the nematode resistance gene Mi. Several accessions were found to carry resistance to 557R. A L. peruvianum backcross population segregating for resistance to 557R was produced. The segregation ratio of resistant to susceptible plants suggested that a single, dominant gene was a major factor in the new resistance. This gene, which we have designated Mi-3, confers resistance against nematode strains that can infect plants carrying Mi. Mi-3, or a closely linked gene, also confers resistance to nematodes at 32°C, a temperature at which Mi is not effective. Bulked-segregant analysis with resistant and susceptible DNA pools was employed to identify RAPD markers linked to this gene. Five-hundred-and-twenty oligonucleotide primers were screened and two markers linked to the new resistance gene were identified. One of the linked markers (NR14) was mapped to chromosome 12 of tomato in an L. esculentum/L. pennellii mapping population. Linkage of NR14 and Mi-3 with RFLP markers known to map on the short arm of chromosome 12 was confirmed by Southern analysis in the population segregating for Mi-3. We have positioned Mi-3 near RFLP marker TG180 which maps to the telomeric region of the short arm of chromosome 12 in tomato.  相似文献   

6.
A genetic linkage map for radiata pine (Pinus radiata D. Don) has been constructed using segregation data from a three-generation outbred pedigree. A total of 208 loci were analyzed including 165 restriction fragment length polymorphism (RFLP), 41 random amplified polymorphic DNA (RAPD) and 2 microsatellite markers. The markers were assembled into 22 linkage groups of 2 or more loci and covered a total distance of 1382 cM. Thirteen loci were unlinked to any other marker. Of the RFLP loci that were mapped, 93 were detected by loblolly pine (P. taeda L.) cDNA probes that had been previously mapped or evaluated in that species. The remaining 72 RFLP loci were detected by radiata pine probes from a PstI genomic DNA library. Two hundred and eighty RAPD primers were evaluated, and 41 loci which were segregating in a 11 ratio were mapped. Two microsatellite markers were also placed on the map. This map and the markers derived from it will have wide applicability to genetic studies in P. radiata and other pine species.  相似文献   

7.
Shcherban AB  Vaughan DA  Tomooka N 《Genetica》2000,108(2):145-154
To better understand the genetic diversity of the wild relatives of rice (Oryza sativa L.) in the O. officinalis species complex repetitive DNA markers were obtained from the diploid species of this complex. One cloned sequence from O. eichingeri gave intense hybridization signals with all species of the O. officinalis complex. This 242 bp clone, named pOe.49, has a copy number from 0.9 to 4.0 × 104 in diploid species of this complex. Analysis of the primary structure and database searches revealed homology of pOe.49 to a number of sequences representing part of the integrase coding domain of retroviruses and gypsy-like retrotransposons. Sequencing of specific PCR products confirmed that pOe.49 is part of a gypsy-like retrotransposon. RFLP analysis was used to study the genomic organisation of pOe.49 among 30 accessions of the O. officinalis complex using 10 restriction enzymes. Diversity analysis based on 120 polymorphic fragments obtained from the RFLP assay grouped the O. officinalis complex accessions by genome, species and eco-geographic groups. The results suggest that, with further characterization, this retrotransposon-like DNA sequence may be useful for phylogenetic analysis of species in the O. officinalis complex. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Phylogeny of tall fescue and related species using RFLPs   总被引:4,自引:0,他引:4  
The wild species of tall fescue (Festuca arundinacea var.genuina Schreb.) represent a wide range of genetic variation and constitute potential germplasm for tall fescue improvement. Our objective was to evaluate genome specificity of the previously-identified DNA probes and to examine the phylogenetic relationship of tall fescue with six related species by using RFLP data. A total of 29 DNA probes from aPstI-genomic library of tall fescue were hybridized toEcoRI-orHindIII-digested DNA of 32 plants from sixFestuca species and fromLolium perenne L. Fifteen probes hybridized to all seven species. The remaining 14 probes showed differential hybridization patterns (i.e., ±), especially at the diploid and tetraploid levels. This hybridization pattern reflected genome divergence in these species. The DNA probes will be useful markers in breeding programs involving interspecific and intergeneric hybridization. Cluster analyses were performed using the average genetic distances calculated with the RFLP data from 53 probe-enzyme combinations. Generally, genotypes from the same species were grouped in the same cluster. These data indicated that tall fescue has a close relationship withF. pratensis Huds. (diploid),F. arundinacea var.glaucescens Boiss. (tetraploid), andL. perenne L. (diploid) and thatFestuca pratensis andL. perenne had the closest degree of relationship.This paper is a contribution of the Missouri Agricultural Experimental Station, Journal Series no. 11,798  相似文献   

9.
AFLP markers were evaluated for determining the phylogenetic relationships Lactuca spp. Genetic distances based on AFLP data were estimated for 44 morphologically diverse lines of cultivated L. sativa and 13 accessions of the wild species L. serriola, L. saligna, L. virosa, L. perennis, and L. indica. The same genotypes were analyzed as in a previous study that had utilized RFLP markers. The phenetic tree based on AFLP data was consistent with known taxonomic relationships and similar to a tree developed with RFLP data. The genetic distance matrices derived from AFLP and RFLP data were compared using least squares regression analysis and, for the cultivar data, by principal component analysis. There was also a positive linear relationship between distance estimates based on AFLP data and kinship coefficients calculated from pedigree data. AFLPs represent reliable PCR-based markers for studies of genetic relationships at a variety of taxonomic levels.  相似文献   

10.
A preliminary genetic map of the dioecious species Asparagus officinalis L. (2n = 20) has been constructed on the basis of restriction fragment length polymorphism (RFLP) and isozyme marker data. With DNA samples digested with either EcoRI or HindIII 61 out of 148 probes (41%) identified RFLPs in six families of doubled haploid lines obtained through anther culture. A higher level of polymorphism (65%) was observed when a single family was screened for RFLPs using six distinct restriction enzymes. Segregation analysis of the BC progenies (40–80 individuals) resulted in a 418-cM extended map comprising 43 markers: 39 RFLPs, three isozymes and one morphological (sex). These markers are clustered in 12 linkage groups and four of them exhibited significant deviations from the expected 11 ratio. One isozyme and three RFLP markers were assigned to the sex chromosome.  相似文献   

11.
Summary In the 1940's the root-knot nematode resistance gene (Mi) was introgressed into the cultivated tomato from the wild species, L. peruvianum, and today it provides the only form of genetic resistance against this pathogen. We report here the construction of a high resolution RFLP map around the Mi gene that may aid in the future cloning of this gene via chromosome walking. The map covers the most distal nine map units of chromosome 6 and contains the Mi gene, nine RFLP markers, and one isozyme marker (Aps-1). Based on the analysis of more than 1,000 F2 plants from four crosses, we were able to pinpoint the Mi gene to the interval between two of these markers — GP79 and Aps-1. In crosses containing the Mi gene, this interval is suppressed in recombination and is estimated to be 0.4 cM in length. In contrast, for a cross not containing Mi, the estimated map distance is approximately 5 times greater (ca. 2 cM).Using RFLP markers around Mi as probes, it was possible to classify nematode resistant tomato varieties into three types based on the amount of linked peruvianum DNA still present. Two of these types (representing the majority of the varieties tested) were found to still contain more than 5 cM of peruvianum chromosome — a result that may explain some of the negative effects (e.g. fruit cracking) associated with nematode resistance. The third type (represented by a single variety) is predicted to carry a very small segment of peruvianum DNA (<2 cM) and may be useful in the identification of additional markers close to Mi and in the orientation of clones during a chromosome walk to clone the gene.  相似文献   

12.
Chromosome banding patterns obtained with C- and N- banding, and AgNO3 staining were studied in somatic metaphase complements of fourLactuca species.L. sativa andL. serriola have almost identical chromosome morphology, andL. saligna differs only slightly from them, butL. virosa is quite distinct from the other species. A gross comparison of the banded karyotypes suggests a closer relationship ofL. saligna toL. sativa/serriola than toL. virosa. Our data agree with the results of previous crossing experiments in these species but conflict partly with recent RFLP data which indicate a closer phenetic relationship ofL. saligna toL. virosa than toL. sativa/serriola. Such a discrepancy may be explained assuming that domestication ofL. sativa/serriola resulted in an increased selection pressure on unique DNA sequences as demonstrated by the RFLP data. Differential evolution of specific heterochromatin classes (and presumably of highly repetitive DNA classes), as revealed by chromosome banding techniques was not linked to domestication. Thus the disparity in conclusions about relationship (in terms of genetic similarity) as based on the different experimental approaches reflects a non-parallel evolution of highly repetitive vs. unique DNA classes.  相似文献   

13.
The purpose of this study was to construct a comparative RFLP map of an allotetraploid wild rice species, Oryza latifolia, and to study the relationship between the CCDD genome of O. latifolia and the AA genome of O. sativa. A set of RFLP markers, which had been previously mapped to the AA genome of cultivated rice, were used to construct the comparative map. Fifty-eight F2 progeny, which were derived from a single F1 plant, were used for segregation analysis. The comparative RFLP map contains 149 DNA markers, including 145 genomic DNA markers from cultivated rice, 3 cDNA markers from oat, and one known gene (waxy, from maize). Segregation patterns reflected the allotetraploid ancestry of O. latifolia, and the CC and DD genomes were readily distinguished by most probes tested. There is a high degree of conservation between the CCDD genome of O. latifolia and the AA genome of O. sativa based on our data, but some inversions and translocations were noted.  相似文献   

14.
Restriction fragment length polymorphism diversity in soybean   总被引:7,自引:0,他引:7  
Summary Fifty-eight soybean accessions from the genus Glycine, subgenus Soja, were surveyed with 17 restriction fragment length polymorphism (RFLP) genetic markers to assess the level of molecular diversity and to evaluate the usefulness of previously identified RFLP markers. In general, only low levels of molecular diversity were observed: 2 of the 17 markers exhibited three alleles per locus, whereas all others had only two alleles. Thirty-five percent of the markers had rare alleles present in only 1 or 2 of the 58 accessions. Molecular diversity was least among cultivated soybeans and greatest between accessions of different soybean species such as Glycine max (L.) Merr. and G. soja Sieb. and Zucc. Principal component analysis was useful in reducing the multidimensional genotype data set and identifying genetic relationships.  相似文献   

15.
Summary Genes introduced into cultivated plants by backcross breeding programs are flanked by introgressed segments of DNA derived from the donor parent. This phenomenon is known as linkage drag and is frequently thought to affect traits other than the one originally targeted. The Tm-2 gene of Lycopersicon peruvianum, which confers resistance to tobacco mosaic virus, was introduced into several different tomato cultivars (L. esculentum) by repeated backcrossing. We have measured the sizes of the introgressed segments flanking the Tm-2 locus in several of these cultivars using a high density map of restriction fragment length polymorphic (RFLP) markers. The smallest introgressed segment is estimated to be 4 cM in length, while the longest is over 51 cM in length and contains the entire short arm of chromosome 9. Additionally, RFLP analysis was performed on remnant seed from different intermediate generations corresponding to two different backcross breeding programs for TMV resistance. The results reveal that plants containing desirable recombination near the resistance gene were rarely selected during backcrossing and, as a result, the backcross breeding method was largely ineffective in reducing the size of linked DNA around the resistance gene. We propose that, by monitoring recombination around genes of interest with linked RFLP markers, one can quickly and efficiently reduce the amount of linkage drag associated with introgression. Using such a procedure, it is estimated that an introgressed segment can be obtained in two generations that is as small as that which would otherwise require 100 backcross generations without RFLP selection.  相似文献   

16.
Self-compatibility was investigated separately in two species of tomato, Lycopersicon peruvianum and L. hirsutum. The codominant expression of self-compatibility (SC)/self incompatibility (SI) was established using intraspecific hybrids of SC and SI hybrids. In SC L. peruvianum, a major stylar protein of approximately 29 kDa cosegregates with self-compatibility in the progeny of SC/SI hybrids. The SC/SI hybrids are self-fertile, but only partially so, since the SI allele present in the hybrids is capable of eliminating certain genotypes in the resultant progeny. In L. hirsutum, the majority of hybrids between one accession of SI L. hirsutum f. hirsutum and one of SC L. hirsutum f. glabratum are self-fertile. Analysis of the progeny revealed that the SC and SI alleles are codominant in this species as well. A protein product for the SC allele is not obvious in style extracts of L. hirsutum f. glabratum. Segregating progeny from SC/SI hybrids of L. hirsutum were used to map the S locus against five RFLP markers on chromosome 1, and estimated map distances are given. In addition, evidence is presented that indicates that one of the DNA markers, CD15, is duplicated in L. hirsutum f. glabratum, and the duplication is not linked to the S locus.  相似文献   

17.
The phylogenetic relationships among the three species of Tinospora found in India are poorly understood. Morphology does not fully help to resolve the phylogeny and therefore a fast approach using molecular analysis was explored. Two molecular approaches viz Random Amplified Polymorphic DNA (RAPD) assay and restriction digestion of ITS1-5.8S-ITS2 rDNA (PCR-RFLP) were used to evaluate the genetic similarities between 40 different accessions belonging to three species. Of the 38 random primers used only six generated the polymorphism, while as three out of 11 restriction enzymes used gave polymorphic restriction patterns. The average proportion of polymorphic markers across primers was 95%, however restriction endonucleases showed 92% polymorphism. RAPD alone was found suitable for the species diversions. In contrast PCR- RFLP showed bias in detecting exact species variation. The correlation between the two markers was performed by Jaccard's coefficient of similarity. A significant (r= 0.574) but not very high correlation was obtained. Further to authenticate the results obtained by two markers, sequence analysis of ITS region of ribosomal DNA (ITS1 and ITS2, including 5.8S rDNA) was performed. Three independent clones of each species T. cordifolia, T. malabarica and T. crispa were sequenced. Phylogenetic relationship inferred from ITS sequences is in agreement with RAPD data.  相似文献   

18.
Summary The production of asymmetric somatic hybrid calli after fusion between gamma-irradiated protoplasts from transgenic Solanum brevidens and protoplasts from S. tuberosum are reported. Transgenic (kanamycin-resistant, GUS-positive) S. brevidens plants and hairy root clones were obtained after transformation with Agrobacterium tumefaciens LBA 1060 (pRi1855) (pBI121) and LBA 4404 (pRAL4404) (pBI121), and A. rhizogenes LBA 9402 (pRi1855) (pBI121), respectively. Leaf protoplasts isolated from the transgenic plants or root protoplasts from the hairy root clones were fused with S. tuberosum leaf protoplasts, and several calli were selected on kanamycin-containing medium. The relative nuclear DNA content of the hybrid calli was measured by flow cytometry (FCM), and the percentages of DNA of the S. brevidens and S. tuberosum genomes in the calli were determined by dot blot analysis using species-specific DNA probes. Chromosome-specific restriction fragment length polymorphism (RFLP) markers were used to investigate the elimination of specific S. brevidens chromosomes in the hybrids. The combined data on FCM, dot blot and RFLP analysis revealed that 18–62% of the S. brevidens DNA was eliminated in the hybrid calli and that the RFLP marker for chromosome 7 was absent in seven out of ten calli. The absence of RFLP markers for chromosomes 5 and 11 hardly ever occurred. In most of the hybrids the ploidy level of the S. tuberosum genome had increased considerably.  相似文献   

19.
To prepare homologous DNA fragments as restriction fragment length polymorphism (RFLP) markers, the genes encoding phenol oxidase, chitinase, and xylanase were amplified from genomic DNA of Rosellinia necatrix strains. RFLP analysis using the amplified DNA fragments as probe was carried out, with segregation of the markers among two sets of F1 progenies isolated from an independent perithecium. RFLP was frequently found using rpo1 as the RFLP marker among strains of R. necatrix, which was isolated from single ascospores and the circumference of the perithecium. In each set, RFLPs of some F1 progenies were different from that of the parent strain. Random amplified polymorphic DNA (RAPD) also revealed that several strains, which were of different genotypes from the parent strain, were contained in the single ascospore culture isolated from the same perithecium. From these results, it is suggested that another strain, which was genetically different, was required for mating and development of the ascus in R. necatrix. Therefore, the life cycle in R. necatrix was presumed to be heterothallism. This is the first report about a heterothallic life cycle in R. necatrix.  相似文献   

20.
Restriction fragment length polymorphisms (RFLPs) were studied in fourteen accessions of CCDD genome allotetraploid wild rice species (Oryza latifolia, O. alta and O. grandiglumis). Fourteen nuclear RFLP markers previously mapped in AA genome-cultivated rice were used as probes. A phylogenetic tree, constructed by parsimony analysis based on RFLPs, grouped the accessions according to their geographic origin from Central or South America. Oryza alta, O. grandiglumis and one accession of O. latifolia grouped together as a subgroup, and our results suggested that the three taxa should be considered as populations of a single complex species. Duplicate loci, representing the two constituent genomes of the allotetraploid, were observed for most RFLP markers. By comparing RFLPs from the allotetraploids with those from a CC genome diploid wild species (O. officinalis), it was possible to detect RFLPs specific for both the CC and DD genomes of the allotetraploid. In inter-accession F2 populations, independent segregation of RFLP markers for CC and DD genomes was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号