首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary A chimeric gene under the control of the hsp70 promoter of Drosophila is heat regulated in roots, stems and leaves, but not in pollen of transgenic tobacco plants. For these and other parameters, it behaves similarly to plant heat-shock genes.  相似文献   

2.
Summary The transit peptide of the maize waxy protein (a nuclear-encoded amyloplast protein of the maize endosperm) was studied with respect to its role in subcellular protein targeting in transgenic potato plants. TP30, a chimeric precursor protein consisting of the waxy transit peptide and an additional 34 amino acids of the mature waxy protein fused to the -glucuronidase of Escherichia coli, was expressed in potato plants under the control of the 35S promoter of cauliflower mosaic virus. This fusion protein is imported not only into amyloplasts, the natural target organelles in the maize plant, but also into chloroplasts. In contrast, Gus, the -glucuronidase alone, which was also expressed in parallel experiments in transgenic potato plants is always found in the cytosol of the plant cells. As a consequence of the different subcellular locations of TP30 and Gus, we observed differences in the expression rates of the respective proteins in leaf cells, resulting in higher steady state levels of TP30 compared to Gus. In tuber cells, no correlation between intracellular location and expression of the proteins was found.  相似文献   

3.
Doubly transformed tobacco plants were obtained following sequential transformation steps using two T-DNAs encoding different selection and screening markers: T-DNA-I encoded kanamycin resistance and nopaline synthase; T-DNA-II encoded hygromycin resistance and octopine synthase. A genetic analysis of the inheritance of the selection and screening marker genes in progeny of the doubly tranformed plants revealed that the expression of T-DNA-I genes was often suppressed. This suppression could be correlated with methylation in the promoters of these genes. Surprisingly, both the methylation and inactivation of T-DNA-I genes occurred only in plants containing both T-DNAs: when self-fertilization or backcrossing produced progeny containing only T-DNA-I, expression of the genes on this T-DNA was restored and the corresponding promoters were partially or completely demethylated. These results indicated that the presence of one T-DNA could affect the state of methylation and expression of genes on a second, unlinked T-DNA in the same genome.  相似文献   

4.
Patatin is a family of lipid acyl hydrolases that accounts for 30 to 40% of the total soluble protein in potato tubers. Class-I patatin genes encode 98 to 99% of the patatin mRNA in tubers, but are not normally expressed in other tissues. They are not totally tuber-specific; however, since they can be induced to express at high levels in other tissues under conditions of sink limitation or in explants cultured on medium containing elevated levels of sucrose. To examine the evolution of the mechanisms that regulate patatin gene expression, we introduced a chimeric patatin--glucuronidase (GUS) gene containing 2.5 kb of 5 flanking sequence from the Class-I potato patatin gene PS20 into tobacco plants. The construct was not expressed at significant levels in leaves of juvenile plants or plantlets cultured in vitro, but was expressed at high levels in explants cultured on medium containing 0.3 to 0.4 M sucrose. While there were differences in the expression of the chimeric gene between transgenic tobacco and potato plants, the pattern of sucrose induction was very similar. These results suggest that the mechanism that controls patatin gene expression in potato tubers evolved from a widely distributed mechanism in which gene expression is regulated by the level of available photosynthate.  相似文献   

5.
Fluorescent reporter proteins that allow repeated switching between a fluorescent and a non-fluorescent state are novel tools for monitoring intracellular protein trafficking. A codon-optimized variant of the reversibly photoswitchable fluorescent protein DRONPA was designed for the use in transgenic Arabidopsis plants. Its codon usage is also well adapted to the mammalian codon usage. The synthetic protein, DRONPA-s, shows photochemical properties and switching behavior comparable to that of the original DRONPA from Pectiniidae both in vitro and in vivo. DRONPA-s fused to the RNA-binding protein AtGRP7 (Arabidopsis thaliana glycine-rich RNA-binding protein 7) under control of the endogenous AtGRP7 promoter localizes to cytoplasm, nucleoplasm and nucleolus of transgenic Arabidopsis plants. To monitor the intracellular transport dynamics of AtGRP7-DRONPA-s, we set up a single-molecule sensitive confocal fluorescence microscope. Fluorescence recovery after selective photoswitching experiments revealed that AtGRP7-DRONPA-s reaches the nucleus by carrier-mediated transport. Furthermore, photoactivation experiments showed that AtGRP7-DRONPA-s is exported from the nucleus. Thus, AtGRP7 is a nucleocytoplasmic shuttling protein. Our results show that the fluorescent marker DRONPA-s is a versatile tool to track protein transport dynamics in stably transformed plants.  相似文献   

6.
Reversible inactivation of dehydrogenases   总被引:5,自引:0,他引:5  
  相似文献   

7.
Transgenic maize (Zea mays L.) and tobacco (Nicotiana tabacum Petit Havana SR1) plants have been generated, which overproduce a mitochondrial Nicotiana plumbaginifolia manganese superoxide dismutase (MnSOD) in chloroplasts. For this, the mature MnSOD-coding sequence was fused to a chloroplast transit peptide from a Pisum sativum ribulose-1,5-bisphosphate carboxylase (Rubisco) gene and expression of the chimeric gene was driven by the cauliflower mosaic virus (CaMV) 35S promoter. The transgenic MnSOD gene product was correctly targeted to the chloroplasts both in maize and tobacco. However, despite the use of the CaMV 35S promoter, the MnSOD was predominantly localized in the chloroplasts of the bundle sheath cells of maize. Furthermore, the transit peptide was cleaved off at a different position in maize and tobacco.  相似文献   

8.
The lacZ gene of Escherichia coli, coding for beta-galactosidase, is a widely used reporter gene for gene expression studies in microbial and animal systems. To demonstrate that it is also a powerful reporter gene in plants, lacZ was fused to 5' regulatory elements of several genes known to be functional in plant cells. By measuring LacZ activities in transgenic plants containing these gene constructs, we showed that the reporter is correctly monitoring the regulatory properties of the well-characterized promoters fused to lacZ. beta-Galactosidase was assayed directly in plant extracts when they contained high levels of LacZ or, when LacZ was expressed at low level, by separating the endogenous and LacZ activities electrophoretically and detecting the enzymes with a fluorogenic substrate. The most outstanding property of the marker is its amenability to histochemical detection. Due to its stability, LacZ can be fixed in the tissue with glutaraldehyde without loss of activity and detected with high resolution by using XGal. We could reveal expression patterns unnoticed earlier for many of the regulatory elements studied. The chlorophyll a/b binding protein gene, expressed at very high levels in green tissues, is also expressed at a low level in the vascular cylinder of the root. The Agrobacterium T-DNA gene encoding octopine synthase is especially active in the epidermis of the root tip and the TR2' gene was shown to be root specific in the intact plant and stimulated by wounding in the leaf tissue. The TR1' gene, fused to nptII, shows similar characteristics suggesting co-regulation of this tightly linked dual promoter.  相似文献   

9.
Reversible gene inactivation in the mouse   总被引:2,自引:0,他引:2  
Mallo M  Kanzler B  Ohnemus S 《Genomics》2003,81(4):356-360
  相似文献   

10.
11.
The activity of purified bovine seminal RNAase and pancreatic RNAase A (EC 3.1.27.5) has been investigated following in vitro ADPribosylation in the presence of nuclear ADPribosyltransferase (EC 2.4.2.30) and NAD+ X ADPribosylation of these enzymes was correlated with a significant decrease in their activities. Approximately three residues of ADPribose were present per mol of enzyme. Removal of the bound ADPribose restored enzyme activity to near normal levels. Similar results were obtained with nuclei isolated from bull seminal vesicles as an endogenous source of seminal RNAase and nuclear ADPribosyltransferase. The findings suggest that in vitro ADPribosylation has a reversible inactivating effect on ribonucleases.  相似文献   

12.
Reversible inactivation of papain by cyanate   总被引:3,自引:0,他引:3  
  相似文献   

13.
14.
To investigate the role of Ser162 in phosphorylation-dependent regulation of maize sucrose-phosphate synthase (SPS) activities in rice, transgenic rice plants expressing wild-type or mutagenized maize SPS were produced. Our results indicate that Ser162 was responsible for overproduction-induced inactivation of SPS protein and for light/ dark modulation of this protein in vivo.  相似文献   

15.
Neuronal expression of chimeric genes in transgenic mice   总被引:9,自引:0,他引:9  
  相似文献   

16.
The expression of a stress- and salicylic acidinducible protein gene from tobacco, PR1a protein gene, was determined after its Introduction to lettuce (Lactuca sativa L.) plants. The 5 flanking 2.4 Kb fragment from PR1a gene was joined to the bacterial -glucuronidase (GUS) gene (PR-GUS) and introduced into lettuce cotyledons by Agrobacterium-mediated gene transfer using a binary vector containing a kanamycin-resistance gene as a selectable marker. As a control with constitutive expression, the chimeric gene consisting of CaMV 35S RNA promoter and GUS gene (35S-GUS) was used. An improved method for shoot formation directly from lettuce cotyledons was used effectively for transformation, shortening the time for regeneration. In 70% or more of kanamycin-resistant regenerated lettuce plants, into which PR-GUS or 35S-GUS was introduced, high GUS activity and integration of the chimeric gene into the lettuce genome were detected. By treatment with salicylic acid, GUS activity increased 3- to 50-fold in PR-GUS transformants, however, no increase was detected in 35S-GUS plants. These results showed that the promoter of the stress-inducible tobacco PR1a protein gene was introduced into lettuce plants, and the introduced chimeric gene was expressed normally under the regulated control of the PRla promoter.Abbreviations BA N6-benzyladenine - GUS -glucuronidase - NAA -naphthaleneacetic acid - Km kanamycin - Kms kanamycin resistant - Km0 kanamycin sensitive - NPT- II neomycin phosphotransferase II - PR pathogenesis-related - SA salicylic acid - MS Murashige and Skoog medium - NOS nopaline synthase  相似文献   

17.
18.
Preincubation of maize leaves crude extracts with NADH resulted in a progressive accumulation of nitrite which mimicked a rapid and lineal activation of nitrate reductase. Nevertheless, in partially purified preparations it was found that preincubation at pH 8.8 with NADH promoted a gradual inactivation of nitrate reductase. At pH 7.5, the enzyme was not inactivated by the presence of NADH alone, but, with the simultaneous presence of a low concentration of cyanide, a fast inactivation took place. The NADH-cyanide-inactivated nitrate reductase remained inactive after removing the excess of NADH and cyanide by filtration through Sephadex G-25. However, it could be readily reactivated by incubation with ferricyanide or by a short exposure to light in the presence of FAD. Prolonged irradiation caused a progressive inactivation of the photoreactivated enzyme.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号