首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To identify the genes responsible for characteristics, that are different as between sake brewing yeasts and laboratory yeast strains, we used a DNA microarray to compare the genome-wide gene expression profiles of a sake yeast, Saccharomyces cerevisiae K-9 (kyokai 9), and a laboratory yeast, S. cerevisiae X2180-1A, under shaking and static conditions.The genes overexpressed in K-9 more than in X2180-1A were related to C-metabolism, including the HXT, ATP, and COX genes, ergosterol biosynthesis, ERG genes, and thiamine metabolism, THI genes. These genes may contribute to higher growth rates and fermentation ability and the ethanol tolerance of sake yeast.The genes underexpressed in K-9 more than in X2180-1A were CUP1-1 and CUP1-2, PHO genes, which may explain the low copper tolerance and low acid phosphatase activity of sake yeast. These underexpressed genes agree with the features and the alteration of the genome structure of sake yeast.  相似文献   

2.
Ergosterol is an essential component of yeast cells that maintains the integrity of the membrane. It was investigated as an important factor in the ethanol tolerance of yeast cells. We investigated the effects of brewing conditions on the ergosterol contents of S. cerevisiae K-9, sake yeast, several kinds of Saccharomyces cerevisiae that produce more than 20% ethanol, and X2180-1A, laboratory yeast. K-9 had a higher total ergosterol contents under all the conditions we examined than X2180-1A. Ethanol and hypoxia were found to have negative and synergistic effects on the total ergosterol contents of both strains, and significantly reduced the free ergosterol contents of X2180-1A but only slightly reduced those of K-9. The maintenance of free ergosterol contents under brewing conditions might be an important character of sake yeast strains. DNA microarray analysis also showed higher expression of ergosterol biosynthesis genes in K-9 than in X2180-1A.  相似文献   

3.
摘要:【目的】研究ERG6基因编码的甾醇C-24甲基转移酶和ERG2基因编码的甾醇C-8异构酶在酿酒酵母麦角甾醇生物合成代谢中的调控作用。【方法】通过PCR扩增克隆到酿酒酵母甾醇C-8异构酶的编码序列及其终止子序列,以大肠杆菌-酿酒酵母穿梭质粒YEp352为载体,以磷酸甘油酸激酶基因PGK1启动子为上游调控元件构建了酵母菌表达质粒pPERG2;同时,在本实验室已构建的ERG6表达质粒pPERG6的基础上,构建了ERG2和ERG6共表达的重组质粒pPERG6-2。将表达质粒转化酿酒酵母单倍体菌株YS58,依据营养缺陷互补筛选到重组菌株YS58(pPERG2)和YS58(pPERG6-2)。通过紫外分光光度法和气相色谱法分析重组菌株甾醇组分和含量。【结果】在ERG6高表达的重组酵母菌中,甾醇中间体和终产物麦角甾醇的含量均比对照菌高;而在ERG2高表达的酵母菌株中,无论甾醇中间体,还是麦角甾醇的含量均明显降低。ERG6和ERG2共表达重组菌株YS58(pPERG6-2)的麦角甾醇含量是对照菌株YS58(YEp352)的1.41倍,是ERG2单独高表达菌株YS58(pPERG2)的1.92倍,是ERG6单独高表达菌株YS58(pPERG6)的1.12倍。【结论】本研究首次证明甾醇C-24甲基转移酶催化的反应是酿酒酵母麦角甾醇合成代谢途径中的一个重要的限速步骤,该酶活性提高不但补偿了ERG2高表达对甾醇合成的负效应,而且使麦角甾醇含量进一步提高,为构建麦角甾醇高产酵母工程菌株提供了实验依据。  相似文献   

4.
通过高保真PCR克隆到含酿酒酵母甾醇C-24甲基转移酶基因编码序列及终止子序列的DNA片段ERG6, 以大肠杆菌-酿酒酵母穿梭质粒YEp352为载体, 磷酸甘油酸激酶基因PGK1启动子为上游调控元件构建了酵母菌表达质粒pPERG6。通过同源重组, 以铜离子螯合蛋白基因CUP1替换染色体上ERG6基因内部序列获得ERG6破坏菌株YS58-erg6, 其中麦角甾醇的合成被阻断, 同时细胞的生长也受到明显抑制。表达质粒pPERG6转化破坏菌株YS58-erg6后, 不但使细胞恢复了合成麦角甾醇的能力, 细胞生物量也得到明显提高, 这说明表达质粒上的ERG6基因得到了功能性的表达。分别用载体质粒YEp352和表达质粒pPERG6转化酿酒酵母单倍体菌株YS58, 获得对照菌株YS58(YEp352)和重组菌株YS58(pPERG6)。重组菌株YS58(pPERG6) 生物量和麦角甾醇含量分别是对照菌YS58(YEp352)的1.23和1.32倍。可见甾醇C-24甲基转移酶基因的高表达可以增强酵母细胞麦角甾醇的合成能力。  相似文献   

5.
6.
甾醇C-22去饱和酶高表达对酵母细胞麦角甾醇合成的影响   总被引:2,自引:0,他引:2  
通过PCR扩增克隆到酵母菌甾醇C-22去饱和酶基因(ERG5)的编码序列及其终止子序列,以大肠杆菌-酿酒酵母穿梭质粒YEp352为载体,以磷酸甘油酸激酶基因PGK1启动子为上游调控元件构建了酵母菌表达质粒pYPE5。以铜离子螯合蛋白基因CUP1替换ERG5基因内部序列获得ERG5破坏菌株YSE5,其中麦角甾醇的合成被阻断,而积累了甾醇中间体Ergosta-5,7-dien-3β-ol。表达质粒pYPE5转化破坏菌株后使细胞恢复了合成麦角甾醇的能力。说明表达质粒上的ERG5基因得到了功能性的表达。将表达质粒pYPE5转化酿酒酵母单倍体菌株YS58,通过营养缺陷互补筛选到重组菌株YS58(pYPE5)。对重组菌株、破坏菌株和互补菌株细胞甾醇组分和含量进行测定,发现重组菌株和互补菌株的麦角甾醇和总甾醇含量明显低于对照菌YS58(YEp352)。测定不同培养时间细胞的麦角甾醇含量,发现重组菌株的麦角甾醇含量始终低于对照菌YS58(YEp352)。可见,ERG5在酵母中的高表达导致细胞麦角甾醇含量降低。  相似文献   

7.
Genes of the post-squalene ergosterol biosynthetic pathway in Saccharomyces cerevisiae have been overexpressed in a systematic approach with the aim to construct yeast strains that produce high amounts of sterols from a squalene-accumulating strain. This strain had previously been deregulated by overexpressing a truncated HMG-CoA reductase (tHMG1) in the main bottleneck of the early ergosterol pathway. The overexpression of the gene ERG1 (squalene epoxidase) induced a significant decrease of the direct substrate squalene, a high increase of lanosterol, and a small increase of later sterols. The overexpression of the ERG11 gene encoding the sterol-14alpha-demethylase resulted in a decrease of lanosterol and an increase of downstream sterols. When these two genes were simultaneously overexpressed, later sterols from zymosterol to ergosterol accumulated and the content of squalene was decreased about three-fold, indicating that these steps had limited the transformation of squalene into sterols. The total sterol content in this strain was three-fold higher than in a wild-type strain.  相似文献   

8.
Genome-wide expression analysis of an industrial strain of Saccharomyces cerevisiae during the initial stages of an industrial lager fermentation identified a strong response from genes involved in the biosynthesis of ergosterol and oxidative stress protection. The induction of the ERG genes was confirmed by Northern analysis and was found to be complemented by a rapid accumulation of ergosterol over the initial 6-h fermentation period. From a test of the metabolic activity of deletion mutants in the ergosterol biosynthesis pathway, it was found that ergosterol is an important factor in restoring the fermentative capacity of the cell after storage. Additionally, similar ERG10 and TRR1 gene expression patterns over the initial 24-h fermentation period highlighted a possible interaction between ergosterol biosynthesis and the oxidative stress response. Further analysis showed that erg mutants producing altered sterols were highly sensitive to oxidative stress-generating compounds. Here we show that genome-wide expression analysis can be used in the commercial environment and was successful in identifying environmental conditions that are important in industrial yeast fermentation.  相似文献   

9.
Saccharomyces bayanus is a yeast species described as one of the two parents of the hybrid brewing yeast S. pastorianus. Strains CBS380(T) and NBRC1948 have been retained successively as pure-line representatives of S. bayanus. In the present study, sequence analyses confirmed and upgraded our previous finding: S. bayanus type strain CBS380(T) harbours a mosaic genome. The genome of strain NBRC1948 was also revealed to be mosaic. Both genomes were characterized by amplification and sequencing of different markers, including genes involved in maltotriose utilization or genes detected by array-CGH mapping. Sequence comparisons with public Saccharomyces spp. nucleotide sequences revealed that the CBS380(T) and NBRC1948 genomes are composed of: a predominant non-cerevisiae genetic background belonging to S. uvarum, a second unidentified species provisionally named S. lagerae, and several introgressed S. cerevisiae fragments. The largest cerevisiae-introgressed DNA common to both genomes totals 70kb in length and is distributed in three contigs, cA, cB and cC. These vary in terms of length and presence of MAL31 or MTY1 (maltotriose-transporter gene). In NBRC1948, two additional cerevisiae-contigs, cD and cE, totaling 12kb in length, as well as several smaller cerevisiae fragments were identified. All of these contigs were partially detected in the genomes of S. pastorianus lager strains CBS1503 (S. monacensis) and CBS1513 (S. carlsbergensis) explaining the noticeable common ability of S. bayanus and S. pastorianus to metabolize maltotriose. NBRC1948 was shown to be inter-fertile with S. uvarum CBS7001. The cross involving these two strains produced F1 segregants resembling the strains CBS380(T) or NRRLY-1551. This demonstrates that these S. bayanus strains were the offspring of a cross between S. uvarum and a strain similar to NBRC1948. Phylogenies established with selected cerevisiae and non-cerevisiae genes allowed us to decipher the complex hybridisation events linking S. lagerae/S. uvarum/S. cerevisiae with their hybrid species, S. bayanus/pastorianus.  相似文献   

10.
Ethanol-sensitive mutants (esl to es10) were isolated from sake yeast, Saccharomyces cerevisiae SY-32. These mutants were unable to grow at 7% ethanol at which the wild type strain SY-32 does grow. The mutants had a variety of fermentation rates and viabilities in the presence of ethanol. The gene ERG6, complementing the ethanol-sensitive mutation of es5, was cloned from an SY-32 gene library. ERG6 encodes S-adenosylmethionine: delta 24-sterol-C-methyltransferase (EC 2.1.1.41) in the ergosterol synthetic pathway. Mutant es5 had a reduced ability to synthesize ergosterol. An erg6 disruptant was also ethanol-sensitive. These results suggested that ERG6 plays an important role in the ethanol tolerance of S. cerevisiae.  相似文献   

11.
The inheritance of mtDNA in lager brewing strains   总被引:1,自引:0,他引:1  
In this work, we compared the mtDNA of a number of interspecific Saccharomyces hybrids (Saccharomyces cerevisiae x Saccharomyces uvarum and S. cerevisiae x Saccharomyces bayanus) to the mtDNA of 22 lager brewing strains that are thought to be the result of a natural hybridization between S. cerevisiae and another Saccharomyces yeast, possibly belonging to the species S. bayanus. We detected that in hybrids constructed in vitro, the mtDNA could be inherited from either parental strain. Conversely, in the lager strains tested, the mtDNA was never of the S. cerevisiae type. Moreover, the nucleotide sequence of lager brewing strains COXII gene was identical to S. bayanus strain NBRC 1948 COXII gene. MtDNA restriction analysis carried out with three enzymes confirmed this finding. However, restriction analysis with a fourth enzyme (AvaI) provided restriction patterns for lager strains that differed from those of S. bayanus strain NBRC 1948. Our results raise the hypothesis that the human-driven selection carried out on existing lager yeasts has favored only those bearing optimal fermentation characteristics at low temperatures, which harbor the mtDNA of S. bayanus.  相似文献   

12.
To isolate an S-adenosylmethionine (SAM)-accumulating yeast strain and to develop a more efficient method of producing SAM, we screened methionine-resistant strains using the yeast deletion library of budding yeast and isolated 123 strains. The SAM content in 81 of the 123 strains was higher than that in the parental strain BY4742. We identified ADO1 encoding adenosine kinase as one of the factors participating in high SAM accumulation. The X?ado1 strain that was constructed from the X2180-1A strain (MAT a, ATCC 26786) could accumulate approximately 30-fold (18 mg/g dry cell weight) more SAM than the X2180-1A strain in yeast extract peptone dextrose medium. Furthermore, we attempted to identify the molecular basis underlying the differences in SAM accumulation between X?ado1 and X2180-1A strains. DNA microarray analysis revealed that the genes involved in the methionine biosynthesis pathway, phosphate metabolism, and hexose transport were mainly overexpressed in the X?ado1 strain compared with the X2180-1A strain. We also determined the levels of various metabolites involved in the methionine biosynthesis pathway and found increased content of SAM, tetrahydrofolate (THF), inorganic phosphate, polyphosphoric acid, and S-adenosylhomocysteine in the X?ado1 strain. In contrast, the content of 5-methyl-THF, homocysteine, glutathione, and adenosine was decreased. These results indicated that the ?ado1 strain could accumulate SAM because of preferential activation of the methionine biosynthesis pathway.  相似文献   

13.
S-Adenosylmethionine (SAM) is an important metabolite that participates in many reactions as a methyl group donor in all organisms, and has attracted much interest in clinical research because of its potential to improve many diseases, such as depression, liver disease, and osteoarthritis. Because of these potential applications, a more efficient means is needed to produce SAM. Accordingly, we developed a positive selection method to isolate SAM-accumulating yeast in this study. In Saccharomyces cerevisiae, one of the main reactions consuming SAM is thought to be the methylation reaction in the biosynthesis of ergosterol that is catalyzed by Erg6p. Mutants with deficiencies in ergosterol biosynthesis may accumulate SAM as a result of the reduction of SAM consumption in ergosterol biosynthesis. We have applied this method to isolate SAM-accumulating yeasts with nystatin, which has been used to select mutants with deficiencies in ergosterol biosynthesis. SAM-accumulating mutants from S. cerevisiae K-9 and X2180-1A were efficiently isolated through this method. These mutants accumulated 1.7–5.5 times more SAM than their parental strains. NMR and GC-MS analyses suggested that two mutants from K-9 have a mutation in the erg4 gene, and erg4 disruptants from laboratory strains also accumulated more SAM than their parental strains. These results indicate that mutants having mutations in the genes for enzymes that act downstream of Erg6p in ergosterol biosynthesis are effective in accumulating SAM.  相似文献   

14.
The ERG24 gene, encoding the C-14 sterol reductase, has been reported to be essential to the aerobic growth of Saccharomyces cerevisiae. We report here, however, that strains with null mutations in the ERG24 gene can grow on defined synthetic media in aerobic conditions. These sterol mutants produce ignosterol (ergosta-8,14-dienol) as the principal sterol, with no traces of ergosterol. In addition, we mapped the ERG24 gene to chromosome XIV between the MET2 and SEC2 genes. Our results indicate that ignosterol can be a suitable sterol for aerobic growth of S. cerevisiae on synthetic media and that inactivation of ERG24 is only conditionally lethal.  相似文献   

15.
16.
Saccharomyces cerevisiae strains that contain the ery8-1 mutation are temperature sensitive for growth due to a defect in phosphomevalonate kinase, an enzyme of isoprene and ergosterol biosynthesis. A plasmid bearing the yeast ERG8 gene was isolated from a YCp50 genomic library by functional complementation of the erg8-1 mutant strain. Genetic analysis demonstrated that integrated copies of an ERG8 plasmid mapped to the erg8 locus, confirming the identity of this clone. Southern analysis showed that ERG8 was a single-copy gene. Subcloning and DNA sequencing defined the functional ERG8 regulon as an 850-bp upstream region and an adjacent 1,272-bp open reading frame. The deduced 424-amino-acid ERG8 protein showed no homology to known proteins except within a putative ATP-binding domain present in many kinases. Disruption of the chromosomal ERG8 coding region by integration of URA3 or HIS3 marker fragments was lethal in haploid cells, indicating that this gene is essential. Expression of the ERG8 gene in S. cerevisiae from the galactose-inducible galactokinase (GAL1) promoter resulted in 1,000-fold-elevated levels of phosphomevalonate kinase enzyme activity. Overproduction of a soluble protein with the predicted 48-kDa size for phosphomevalonate kinase was also observed in the yeast cells.  相似文献   

17.
Gene expression analysis of cold and freeze stress in Baker's yeast   总被引:1,自引:0,他引:1  
We used mRNA differential display to assess yeast gene expression under cold or freeze shock stress conditions. We found both up- and down-regulation of genes, although repression was more common. We identified and sequenced several cold-induced genes exhibiting the largest differences. We confirmed, by Northern blotting, the specificity of the response for TPI1, which encodes triose-phosphate isomerase; ERG10, the gene for acetoacetyl coenzyme A thiolase; and IMH1, which encodes a protein implicated in protein transport. These genes also were induced under other stress conditions, suggesting that this cold response is mediated by a general stress mechanism. We determined the physiological significance of the cold-induced expression change of these genes in two baker's yeast strains with different sensitivities to freeze stress. The mRNA level of TPI1 and ERG10 genes was higher in freeze-stressed than in control samples of the tolerant strain. In contrast, both genes were repressed in frozen cells of the sensitive strain. Next, we examined the effects of ERG10 overexpression on cold and freeze-thaw tolerance. Growth of wild-type cells at 10 degrees C was not affected by high ERG10 expression. However, YEpERG10 transformant cells exhibited increased freezing tolerance. Consistent with this, cells of an erg10 mutant strain showed a clear phenotype of cold and freeze sensitivity. These results give support to the idea that a cause-and-effect relationship between differentially expressed genes and cryoresistance exists in Saccharomyces cerevisiae and open up the possibility of design strategies to improve the freeze tolerance of baker's yeast.  相似文献   

18.
19.
The frequency of ethanol-induced respiratory deficient mutants and lipid composition in two Saccharomyces cerevisiae strains showing different degrees of ethanol tolerance were investigated. The more ethanol-tolerant strain exhibited a lower frequency of ethanol-induced respiratory deficient mutants than the less ethanol-tolerant strain. In addition, the more ethanol-tolerant strain contained a higher ergosterol/phospholipid ratio, a higher proportion of phosphatidylcholine, a lower proportion of phosphatidylethanolamine, a higher incorporation of long-chain fatty acids in total phospholipids, and a slightly higher proportion of unsaturated fatty acids in total phospholipids than the less ethanol-tolerant strain. These results show a clear relationship between the lipid composition, the frequency of ethanol-induced respiratory deficient mutants, and the ethanol tolerance of S. cerevisiae. A possible explanation of this relationship is discussed.  相似文献   

20.
Using yeast strains with null mutations in structural genes which encode delta-aminolevulinic acid synthetase (HEM1), isozymes of 3-hydroxy-3-methylglutaryl coenzyme A (HMG1 and HMG2), squalene epoxidase (ERG1), and fatty acid delta 9-desaturase (OLE1), we were able to determine the effect of hemes, sterols, and unsaturated fatty acids on both sterol production and the specific activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) in Saccharomyces cerevisiae. We found that the HMGR isozymes direct essentially equal amounts of carbon to the biosynthesis of sterols under heme-competent conditions, despite a huge disparity (57-fold) in the specific activities of the reductases. Our results demonstrate that palmitoleic acid (16:1) acts as a rate-limiting positive regulator and that ergosterol acts as a potent inhibitor of sterol production in strains which possess only the HMGR1 isozyme (HMG1 hmg2). In strains which contain only the HMGR2 isozyme (hmg1 HMG2), sterol production was inhibited by oleic acid (18:1) and to a lesser degree by ergosterol. The specific activities of the two reductases (HMGR1 and HMGR2) were found to be differentially regulated by hemes but not by ergosterol, palmitoleic acid, or oleic acid. The disparate effects of unsaturated fatty acids and sterols on these strains lead us to consider the possibility of separate, compartmentalized isoprenoid pathways in S. cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号