首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Aside from its mechanical barrier function, bronchial epithelium plays an important role both in the host defense and in the pathogenesis of inflammatory airway disorders. To investigate its role in lung defense, the effect of a bacterial cell wall protein, the outer membrane protein A from Klebsiella pneumoniae (kpOmpA) on bronchial epithelial cells (BEC) was evaluated on adhesion molecule expression and cytokine production. Moreover, the potential implication of this mechanism in kpOmpA-induced lung inflammation was also determined. Our in vitro studies demonstrated that kpOmpA strongly bound to BEAS-2B cells, a human BEC line, and to BEC primary cultures, resulting in NF-kappaB signaling pathway activation. Exposure to kpOmpA increased ICAM-1 mRNA and cell surface expression, as well as the secretion of IL-6, CXC chemokine ligand (CXCL)1, CXCL8, C-C chemokine ligand 2, CXCL10 by BEAS-2B cells, and BEC primary cultures (p < 0.005). We analyzed in vivo the consequences of intratracheal injection of kpOmpA to BALB/c mice. In kpOmpA-treated mice, a transient neutrophilia (with a maximum at 24 h) was observed in bronchoalveolar lavage and lung sections. In vivo kpOmpA priming induced bronchial epithelium activation as evaluated by ICAM-1 and CXCL1 expression, associated with the secretion of CXCL1 and CXCL5 in bronchoalveolar lavage fluids. In the lung, an increased level of the IL-6, CXCL1, CXCL5, CXCL10 mRNA was observed with a maximum at 6 h. These data showed that kpOmpA is involved in host defense mechanism by its ability to activate not only APC but also BEC, resulting in a lung neutrophilia.  相似文献   

2.
The binding of outer membrane (OM) ghosts derived from Pseudomonas aeruginosa strain 492c to human buccal epithelial cells (BECs) was examined. Electron microscopic examination of the binding of OM ghosts to BECs revealed direct OM ghost-BEC interaction. Equilibrium analysis of the binding of OM ghosts to trypsinized BECs employing the Langmuir adsorption isotherm indicated the number of binding sites (N) to be 1.3 X 10(-4) micrograms protein per BEC with an apparent association constant (Ka) of 3.4 X 10(-2) mL/microgram protein. The Langmuir analysis of binding of OM ghosts to untrypsinized BECs was complex, suggesting two possible classes of receptors, a high affinity-low copy number class (Ka, 7.8 X 10(-2)mL/microgram protein; N, 8.6 X 10(-5) microgram protein per BEC) and a low affinity-high copy number class (Ka, 3.7 X 10(-3)mL/microgram protein; N, 9.2 X 10(-4)microgram protein per BEC). Sugar inhibition studies incorporating D-galactose enhanced binding to each BEC type. N-Acetylneuraminic acid and N-acetylglucosamine both enhanced binding of OM ghosts to untrypsinized BECs, while inhibiting binding to trypsinized BECs. D-Arabinose inhibited binding to both BEC types. Binding of OM ghosts to both BEC types was greatly inhibited by D-fucose, while L-fucose only greatly inhibited binding to untrypsinized BECs. These sugar inhibition data demonstrated a difference in the binding of OM ghosts to trypsinized and untrypsinized BECs and possibly reveal the nature of the receptor(s), free of possible bacterial metabolic effects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Mucosal immune response depends on the surveillance network established by dendritic cells (DC), APC localized within the epithelium. Bronchial epithelial cells (BEC) play a pivotal role both in the host defense and in the pathogenesis of inflammatory airway disorders. We previously showed that the outer membrane protein A from Klebsiella pneumoniae (KpOmpA), a pathogen-associated molecular pattern (PAMP) derived from Klebsiella pneumoniae, activates BEC. In this study, we evaluated the consequences of this activation on DC traffic and functions. KpOmpA significantly increased the production of CCL2, CCL5, CXCL10, and CCL20 by BEC. Stimulation of BEC increased their chemotactic activity for monocyte-derived DC (MDDC) precursors, through CCL5 and CXCL10 secretion. BEC/MDDC precursor coculture leads to an ICAM-1-dependent accelerated differentiation and enhanced maturation of MDDC. BEC/DC interactions did not affect the capacity of DC to induce T cell proliferation. However, DC preincubated with BEC increased significantly the IL-10 production by autologous T cells. Basolateral and intraepithelial DC differently enhance IL-4 and/or IL-10 synthesis according to the condition of stimulation. In vivo, intranasal injections of KpOmpA into BALB/c mice induced the recruitment of CD11c(+) and I-A(d+) myeloid DC associated with bronchial epithelium activation as evidenced by CCL20 expression. These data show that KpOmpA-exposed BEC participate in the homeostasis of myeloid DC network, and regulate the induction of local immune response.  相似文献   

4.
The NaCl content of airway surface fluid is believed to be of central importance in lung pathology. To test whether the Na+ concentration could influence the inflammatory response in human bronchial epithelial cells (BECs), we investigated the interleukin (IL)-8 and RANTES expression in BECs exposed to an isotonic sea-water derived low Na+ (ISW) saline compared to isotonic 0.9% NaCl saline. Exposure of BECs to ISW saline caused a significant decrease in IL-8 and RANTES gene expression and protein production as compared to that observed with 0.9% NaCl saline. Furthermore, we observed a concomitant reduction of phosphorylated IkappaBalpha associated with a marked inhibition of NF-kappaB-DNA binding activity in BECs exposed to ISW saline as compared to 0.9% NaCl saline. These findings support a new role for Na+ in the pathogenesis of airway inflammatory disorders. Therapies targeted at lowering Na+ level in airway epithelium may be beneficial in treating inflammatory lung diseases.  相似文献   

5.
IL-5 is a pleiotropic cytokine that promotes eosinophil differentiation and survival. While naïve bronchial epithelial cells (BEC) produce low levels of IL-5, the role of BEC-derived IL-5 in allergic airway inflammation is unknown. We now show that BEC, isolated from mice with OVA-induced allergic airway disease (AAD), produced elevated levels of IL-5 mRNA and protein as compared to BEC from naïve mice. To determine the contribution of BEC-derived IL-5 to effector responses in the airways, IL-5 deficient bone marrow chimeric mice were generated in which IL-5 expression was restricted to stromal (e.g. BEC) or hematopoietic cells. When subjected to AAD, IL-5 produced by BECs contributed to mucous metaplasia, airway eosinophilia, and OVA-specific IgA levels. Thus, IL-5 production by BEC can impact the microenvironment of the lung, modifying pathologic and protective immune responses in the airways.  相似文献   

6.
血管活性肠肽对支气管上皮细胞趋化迁移的影响及机制   总被引:2,自引:0,他引:2  
Guan CX  Zhang CQ  Qin XQ  Luo ZQ  Zhou FW  Sun XH 《生理学报》2002,54(2):103-106
为探讨肺内神经肽在气道损伤修复中的作用 ,采用blind wellBoydenchamber测定原代培养的支气管上皮细胞 (bronchialepithelialcells,BEC)趋化性 ,观察血管活性肠肽 (vasoactiveintestinalpeptide ,VIP)对BEC趋化迁移的影响及其机制 ,并测定经热应激后BEC分泌VIP及表达VIP受体 (vasoactiveintestinalpeptidereceptor,VIPR)的变化。结果显示 :(1)以胰岛素作为趋化因子所建立的BEC趋化性测定方法稳定 ,重现性好 (r =0 970 3,P <0 0 1) ;(2 )VIP (0 0 0 1~ 1μmol/L)均显示剂量依赖性地增强BEC的趋化迁移 ,其效应可被钙调蛋白阻断剂及蛋白激酶C阻断剂有效地抑制 (P <0 0 1) ;(3) 4 2℃、30min热应激后BEC分泌VIP (P <0 0 1)及表达VIPR明显增加 (P <0 0 5 )。实验表明 :肺内神经肽VIP可增强BEC的趋化迁移 ,其细胞内信号转导途径与钙调蛋白及蛋白激酶C有关。而热应激时VIP及VIPR的高表达进一步提示局部微环境的VIP可能是气道上皮损伤修复网络中的重要分子  相似文献   

7.
Calcium mobilization can regulate a wide range of essential functions of respiratory epithelium, including ion transport, ciliary beat frequency, and secretion of mucus, all of which are modified in cystic fibrosis (CF). SERCA2, an important controller of calcium signaling, is deficient in CF epithelium. We conducted this study to determine whether SERCA2 deficiency can modulate airway epithelial responses to environmental oxidants such as ozone. This could contribute to the pathogenesis of pulmonary exacerbations, which are important and frequent clinical events in CF. To address this, we used air-liquid interface (ALI) cultures of non-CF and CF cell lines, as well as differentiated cultures of cells derived from non-CF and CF patients. We found that ozone exposure caused enhanced membrane damage, mitochondrial dysfunction and apoptotic cell death in CF airway epithelial cell lines relative to non-CF. Ozone exposure caused increased proinflammatory cytokine production in CF airway epithelial cell lines. Elevated proinflammatory cytokine production also was observed in shRNA-mediated SERCA2 knockdown cells. Overexpression of SERCA2 reversed ozone-induced proinflammatory cytokine production. Ozone-induced proinflammatory cytokine production was NF-κB- dependent. In a stable NF-κB reporter cell line, SERCA2 inhibition and knockdown both upregulated cytomix-induced NF-κB activity, indicating importance of SERCA2 in modulating NF-κB activity. In this system, increased NF-κB activity was also accompanied by increased IL-8 production. Ozone also induced NF-κB activity and IL-8 release, an effect that was greater in SERCA2-silenced NF-κB-reporter cells. SERCA2 overexpression reversed cytomix-induced increased IL-8 release and total nuclear p65 in CFTR-deficient (16HBE-AS) cells. These studies suggest that SERCA2 is an important regulator of the proinflammatory response of airway epithelial cells and could be a potential therapeutic target.  相似文献   

8.
Selenium (Se) deficiency is associated with decreased activities of Se-dependent antioxidant enzymes, glutathione peroxidase (GPx) and thioredoxin reductase (TR), and with changes in the cellular redox status. We have previously shown that host Se deficiency is responsible for increased virulence of influenza virus in mice due to changes in the viral genome. The present study examines the antioxidant defense systems in the lung and liver of Se-deficient and Se-adequate mice infected with influenza A/Bangkok/1/79. Results show that neither Se status nor infection changed glutathione (GSH) concentration in the lung. Hepatic GSH concentration was lower in Se-deficient mice, but increased significantly day 5 post infection. No significant differences due to Se status or influenza infection were found in catalase activities. As expected, Se deficiency was associated with significant decreases in GPx and TR activities in both lung and liver. GPx activity increased in the lungs and decreased in the liver of Se-adequate mice in response to infection. Both Se deficiency and influenza infection had profound effects on the activity of superoxide dismutase (SOD). The hepatic SOD activity was higher in Se-deficient than Se-adequate mice before infection. However, following influenza infection, hepatic SOD activity in Se-adequate mice gradually increased. Influenza infection was associated with a significant increase of SOD activity in the lungs of Se-deficient, but not Se-adequate mice. The maximum of SOD activity coincided with the peak of pathogenesis in infected lungs. These data suggest that SOD activation in the lung and liver may be a part of a compensatory response to Se deficiency and/or influenza infection. However, SOD activation that leads to increased production of H(2)O(2) may also contribute to pathogenesis and to influenza virus mutation in lungs of Se-deficient mice.  相似文献   

9.
The airway epithelium is the initial barrier against airborne pathogens, and it plays many roles in host airway defense. Legionella pneumophila is an intracellular pathogen that causes rapidly advancing pneumonia and is sometimes life-threatening. Here, we evaluated the role of the airway epithelial cells in the defense against L.?pneumophila by examining mucus production in vitro. The production of MUC5AC, a major mucin protein, was not induced by formalin- or ultraviolet-killed L.?pneumophila, but it was induced by live L.?pneumophila. Similarly, nuclear factor-kappaB (NF-κB) was activated only by live L.?pneumophila. Inhibitors of ERK and JNK, but not p38, dose-dependently inhibited the induction of MUC5AC by live L.?pneumophila. Inhibition of intracellular invasion by cytochalasin D did not affect MUC5AC production. Taken together, the results suggest that live L.?pneumophila induces MUC5AC production via the ERK-JNK and NF-κB pathways without internalization of bacteria and that the airway epithelium produces mucin as part of the immune response against L.?pneumophila.  相似文献   

10.
The activity of arginase converting arginine into ornithine and urea is of particular interest among many factors regulating NO production in the cells. It is known that by competing with NO-synthase for common substrate, arginase can affect the NO synthesis. In the present work, the properties of arginase from the frog Rana temporaria L. urinary bladder epithelial cells possessing the NO-synthase activity were characterized, and possible contribution of arginase to regulation of NO production by epithelial cells was studied. It has been shown that the enzyme had the temperature optimum in the range of 55-60 degrees C, K(m) for arginine 23 mM, and V(max) about 10 nmol urea/mg protein/min, and its activity was effictively inhibited by (S)-(2-boronoethyl)-L-cysteine (BEC), an inhibitor of arginase, at concentrations from 10(-6) to 10(-4) M. The comparison of arginase activity in various frog tissues revealed the following pattern: liver > kidney > brain > urinary bladder (epithelium) > heart > testis. The arginase activity in the isolated urinary bladder epithelial cells was 3 times higher than that in the intact urinary bladder. To evaluate the role of arginase in the regulation of NO production, epithelial cells were cultivated in the media L-15 or 199 containing different amounts of arginine; the concentration of NO2-, the stable NO metabolite, was determined in the culture fluid after 18-20 h of cells incubation. The vast majority of the produced nitrites are associated with the NOS activity, as L-NAME, the NOS-inhibitor, decreased their accumulation by 77.1% in the L-15 medium and by 80% in 199 medium. BEC (10(-4) M) increased the nitrite production by 18.0 % +/- 2.7 in the L-15 medium and by 24.2 +/- 3.5 in the 199 medium (p < 0.05). The obtained data indicate a relatively high arginase activity in the frog urinary bladder epithelium and its involvement in regulation of NO production by epithelial cells.  相似文献   

11.
The relative contributions of catalase and the selenoenzyme glutathione peroxidase (GSH-Px) were elucidated in the rat liver by selectively modulating the activities of these enzymes using dietary selenium (Se) and the catalase inhibitor 3-amino-1,2,4-triazole (3-AT). Increased peroxidation occurred only in Se-deficient rats with markedly reduced cytosolic and mitochondrial GSH-Px activities. Although 3-AT treatment resulted in a 75% reduction of hepatic catalase activity and also a 20% reduction of both cytosolic and mitochondrial superoxide dismutase (SOD) activity, no incremental increase in peroxidation was observed over that associated with Se deficiency. In Se-deficient animals, treatment with 3-AT resulted in a doubling of cytosolic GSH-Px. This was associated with a 49% elevation in hepatic Se suggesting that increased Se may have contributed to the enhanced GSH-Px activity. These results suggest that GSH-Px plays the pivotal role in preventing hepatic peroxidation. Furthermore, the effects of 3-AT in vivo are not restricted to inhibition of catalase activity insofar as it also affects cytosolic GSH-Px activity and cytosolic and mitochondrial SOD activities.  相似文献   

12.
The effect of growth temperature on the binding of Candida albicans to human buccal epithelial cells (BECs) was examined using an equilibrium of binding analysis. Candida albicans was cultured in M9 medium either for 12 h at 25 degrees C or for 9 h at 25 degrees C and then shifted to 37 degrees C for 3 h. The temperature shift did not result in germ tube formation; however, the adherence of C. albicans to BECs was altered. Shifting temperature increased the yeast's ability to bind to BECs. A Langmuir adsorption isotherm was used to calculate the maximum number of available binding sites (N) and the apparent association constants of binding (Ka) for all resolvable adhesin-receptor interactions. Three classes of adhesin-receptor interactions were resolved when the yeast was cultured at 25 degrees C and included a low copy number site (N = 3.0 cfu/BEC; Ka = 2.11 X 10(-6) mL/cfu), a medium copy number site (N = 23.6 cfu/BEC, Ka = 8.21 X 10(-7) mL/cfu), and a high copy number site (N = 91.7 cfu/BEC, Ka = 3.35 X 10(-8) mL/cfu). Two classes of adhesin-receptor interactions were resolved when the incubation temperature was shifted to 37 degrees C: a low copy number site (N = 4.5 cfu/BEC, Ka = 3.98 X 10(-6) mL/cfu) and a high copy number site (N = 150.5 cfu/BEC, Ka = 8.47 X 10(-8) mL/cfu). Augmented C. albicans adherence to BECs due to the elevated growth temperatures appears to result from a temperature-regulated alteration in the C. albicans adhesin that recognizes a high copy number receptor site with relatively low affinity.  相似文献   

13.
The mucus layer coating the gastrointestinal tract serves as the first line of intestinal defense against infection and injury. Probiotics promote mucin production by goblet cells in the intestine. p40, a Lactobacillus rhamnosus GG-derived soluble protein, has been shown to transactivate the EGF receptor (EGFR) in intestinal epithelial cells, which is required for inhibition of apoptosis and preservation of barrier function in the colon, thereby ameliorating intestinal injury and colitis. Because activation of EGFR has been shown to up-regulate mucin production in goblet cells, the purpose of this study was to investigate the effects and mechanisms of p40 regulation of mucin production. p40 activated EGFR and its downstream target, Akt, in a concentration-dependent manner in LS174T cells. p40 stimulated Muc2 gene expression and mucin production in LS174T cells, which were abolished by inhibition of EGFR kinase activity, down-regulation of EGFR expression by EGFR siRNA transfection, or suppression of Akt activation. Treatment with p40 increased mucin production in the colonic epithelium, thus thickening the mucus layer in the colon of wild type, but not of Egfrwa5 mice, which have a dominant negative mutation in the EGFR kinase domain. Furthermore, inhibition of mucin-type O-linked glycosylation suppressed the effect of p40 on increasing mucin production and protecting intestinal epithelial cells from TNF-induced apoptosis in colon organ culture. Thus, these results suggest that p40-stimulated activation of EGFR mediates up-regulation of mucin production, which may contribute to the mechanisms by which p40 protects the intestinal epithelium from injury.  相似文献   

14.
15.
Oxidant stress, as a consequence of selenium (Se) deficiency, alters production of vasoactive compounds including platelet-activating factor (PAF). Recent studies report that enhanced PAF production during Se deficiency is a consequence of increased lyso-PAF:acetyl-coenzyme A acetyltransferase (Lyso-PAF-AcT) activity. To elucidate the mechanism behind increased Lyso-PAF-AcT activity during oxidant stress, phospholipase D (PLD) activity and phosphatidic acid (PA) production were examined. Increased PLD activity and PA production were exhibited in bovine aortic endothelial cells using a Se-deficient model of oxidant stress. The direct effects of PLD and PA on Lyso-PAF-AcT activity were assessed using selective inhibitors and repletion experiments. Following the inhibition of PLD and addition of exogenous PA, Lyso-PAF-AcT activity significantly decreased and increased, respectively. Therefore, Se deficiency enhances Lyso-PAF-AcT activity in part by modifying PLD and PA. This suggests a novel link between Se status and PAF production, providing potential upstream therapeutic targets for PAF regulation under conditions of oxidant stress.  相似文献   

16.
Excessive mucus production by airway epithelium is a major characteristic of a number of respiratory diseases, including asthma, chronic bronchitis, and cystic fibrosis. However, the signal transduction pathways leading to mucus production are poorly understood. Here we examined the potential role of IkappaB kinase beta (IKKbeta) in mucus synthesis in vitro and in vivo. Tumor necrosis factor-alpha (TNF-alpha) or transforming growth factor-alpha stimulation of human epithelial cells resulted in mucus secretion as measured by MUC5AC mRNA and protein. TNF-alpha stimulation induced IKKbeta-dependent p65 nuclear translocation, mucus synthesis, and production of cytokines from epithelial cells. TNF-alpha, but not transforming growth factor-alpha, induced mucus production dependent on IKKbeta-mediated NF-kappaB activation. In vivo, TNF-alpha induced NF-kappaB as determined by whole mouse body bioluminescence. This activation was localized to the epithelium as revealed by LacZ staining in NF-kappaB-LacZ transgenic mice. TNF-alpha-induced mucus production in vivo could also be inhibited by administration into the epithelium of an IKKbeta dominant negative adenovirus. Taken together, our results demonstrated the important role of IKKbeta in TNF-alpha-mediated mucus production in airway epithelium in vitro and in vivo.  相似文献   

17.
Reactive oxygen species (ROS) play a pivotal role in the development of neuroinflammatory disorders, such as multiple sclerosis (MS). Here, we studied the effect of ROS on protein expression in brain endothelial cells (BECs) using proteomic techniques and show that long-term exposure to ROS induces adaptive responses in BECs to counteract an oxidative attack. ROS induce differential protein expression in BECs, among which is peroxiredoxin-1 (Prx1). To further study the role of Prx1 we established a BEC line overexpressing Prx1. Our data indicate that Prx-1 overexpression protects BECs from ROS-induced cell death, reduces adhesion and subsequent transendothelial migration of monocytes by decreasing intercellular adhesion molecule-1 expression, and enhances the integrity of the BEC layer. Interestingly, vascular Prx1 immunoreactivity was markedly upregulated in inflammatory lesions of experimental autoimmune encephalomyelitis (EAE) animals and active demyelinating MS lesions. These findings indicate that enhanced vascular Prx1 expression may reflect the occurrence of vascular oxidative stress in EAE and MS. On the other hand, it may function as an endogenous defense mechanism to inhibit leukocyte infiltration and counteract ROS-induced cellular injury.  相似文献   

18.
整合素—配体结合反应上调兔支气管上皮细胞抗氧化能力   总被引:4,自引:1,他引:4  
Qin XQ  Xiang Y  Guan CX  Zhang CQ  Sun XH 《生理学报》2001,53(1):41-44
支气管上皮细胞(BECs)的抗氧化活性对于改善上皮的抗损伤能力、维持上皮结构和功能的完整性具有重要意义。BEC表达的整合素分子是细胞外基质成分如纤维连接蛋白(Fn)的受体,与细胞的生长、分化、代谢调控有关,为论证整合素-配体结合反应对细胞抗氧化活性的影响,本实验用臭氧攻击培养的兔BEC,观察用EFn或其特异性识别域片段RGD肽处理后细胞内谷胱苷肽过氧化物酶(GSH-Px)、超氧化物歧化酶(SOD)、过氧化氢酶(catalase)三种抗氧化酶活性变化和谷胱苷肽(GSH)含量的变化。结果:(1)Fn及RGD肽均呈剂量依赖性地提高GSH-Px活性(分别为r=0.93和r=0.73),Fn的上调作用可被钙调素抑制剂W7逆转;(2)Fn可提高SOD活性,但能被W7阻断;(3)Fn增加细胞的catalase活性,W7可取消这一效应;(4)Fn和RGD肽处理增加细胞内GSH含量,且有量-效关系(相关系数r分别为0.82和0.84)。以上结果提示,细胞外基质与整合素结合可增强细胞的抗氧化酶活性,增加GSH含量,以及提高抗氧化损伤能力。  相似文献   

19.
Whether hepatocytes can convert into biliary epithelial cells (BECs) during biliary injury is much debated. To test this concept, we traced the fate of genetically labeled [dipeptidyl peptidase IV (DPPIV)-positive] hepatocytes in hepatocyte transplantation model following acute hepato-biliary injury induced by 4,4’-methylene-dianiline (DAPM) and D-galactosamine (DAPM+D-gal) and in DPPIV-chimeric liver model subjected to acute (DAPM+D-gal) or chronic biliary injury caused by DAPM and bile duct ligation (DAPM+BDL). In both models before biliary injury, BECs are uniformly DPPIV-deficient and proliferation of DPPIV-deficient hepatocytes is restricted by retrorsine. We found that mature hepatocytes underwent a stepwise conversion into BECs after biliary injury. In the hepatocyte transplantation model, DPPIV-positive hepatocytes entrapped periportally proliferated, and formed two-layered plates along portal veins. Within the two-layered plates, the hepatocytes gradually lost their hepatocytic identity, proceeded through an intermediate state, acquired a biliary phenotype, and subsequently formed bile ducts along the hilum-to-periphery axis. In DPPIV-chimeric liver model, periportal hepatocytes expressing hepatocyte nuclear factor-1β (HNF-1β) were exclusively DPPIV-positive and were in continuity to DPPIV-positives bile ducts. Inhibition of hepatocyte proliferation by additional doses of retrorsine in DPPIV-chimeric livers prevented the appearance of DPPIV-positive BECs after biliary injury. Moreover, enriched DPPIV-positive BEC/hepatic oval cell transplantation produced DPPIV-positive BECs or bile ducts in unexpectedly low frequency and in mid-lobular regions. These results together suggest that mature hepatocytes but not contaminating BECs/hepatic oval cells are the sources of periportal DPPIV-positive BECs. We conclude that mature hepatocytes contribute to biliary regeneration in the environment of acute and chronic biliary injury through a ductal plate configuration without the need of exogenously genetic or epigenetic manipulation.  相似文献   

20.
More than 6000 residents of Latvia were involved in recovery work in Chernobyl. They were healthy men exposed to substantial ionizing radiation (0.01–0.5 Gy). Now, these recovery workers suffer from “postradiation syndrome”: dizziness and poor memory, headache, local pains, and so forth. The biochemical mechanism of “postradiation syndrome” has not been completely established. In this Phase I study, we have investigated how exposure to radiation impacts antioxidative defense and trace element concentrations in the blood of recovery workers. Thirty-five patients with postradiation syndrome (men, age range 33–50 yr) and 15 healthy men similar in age as control subjects were studied for the effects on plasma chemiluminescence, the activity of antioxidant enzymes, and the concentration of ceruloplasmin and concentrations of selenium (Se), zinc (Zn), and copper (Cu) in blood. The results revealed that plasma chemiluminescence was significantly increased (3.5-fold to 5.5-fold), the activity of catalase in erythrocytes was significantly elevated, and the activity of glutathione peroxidase in plasma was significantly reduced in examined patients. Concentrations of Zn and Cu were significantly higher and the concentration of Se was lower in these patients. We conclude that the patients exposed to ionizing radiation have diminished blood antioxidant defense associated with pronounced Se deficiency and imbalance of Zn and Cu. Presented in part on the SFRR (Europe) Summer Meeting in Dresden, July 2–5, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号