首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
A novel gene was created that linked complementary portions of two different tyrosine kinase oncogenes: v-erB and v-src. The v-erbB/src chimera encoded a glycoprotein exhibiting the subcellular distribution of the v-erbB protein but containing the kinase catalytic domain of the v-src parent. Fibroblasts expressing the v-erbB/src gene product became transformed to an oncogenic state and closely resembled cells expressing the v-erbB parent oncogene. Our results indicated that v-erbB sequences can be functionally replaced by sequences derived from a different oncogene, v-src, and that important determinants of the transformed phenotype appear to be encoded in oncogene sequences distinct from those defining the kinase catalytic domain itself.  相似文献   

2.
3.
The transforming protein v-erbB of avian erythroblastosis virus (AEV) displays extensive sequence homology with the presumptive protein-tyrosine kinase domain of the human EGF receptor and with the src protein-tyrosine kinase family of oncogenes. However, no kinase activity has previously been demonstrated for the v-erbB protein. Here antibodies generated against a synthetic peptide from the C terminus of human EGF receptor are shown to immunoprecipitate the EGF receptor from human and avian cells, as well as the v-erbB proteins from AEV-transformed cells that become phosphorylated on tyrosine residues upon the addition of gamma-32P-ATP. The immunoprecipitates are also able to phosphorylate exogenous tyrosine-containing substrates. Hence, it is likely that both avian EGF receptor and v-erbB proteins are protein tyrosine-specific protein kinases. Since the kinase activity of v-erbB protein cannot be regulated by EGF, it is proposed that the tyrosine protein kinase function of v-erbB may be constitutively activated.  相似文献   

4.
The feline sarcoma virus oncogene v-fms has significantly contributed to the dissection of peptide growth factor action since it encodes the transmembrane tyrosine kinase gp140v-fms, a transforming version of colony-stimulating factor 1 receptor, a member of the growth factor receptor tyrosine kinase family. In this study, the functional significance of structural differences between distinct tyrosine kinase types, in particular between cellular receptors and viral transforming proteins of distinct structural types, has been further investigated, and their functional compatibility has been addressed. For this purpose, major functional domains of three structurally distinct tyrosine kinases were combined into two chimeric receptors. The cytoplasmic gp140v-fms kinase domain and the kinase domain of Rous sarcoma virus pp60v-src were each fused to the extracellular ligand-binding domain of the epidermal growth factor (EGF) receptor to create chimeras EFR and ESR, respectively, which were studied upon stable expression in NIH 3T3 fibroblasts. Both chimeras were faithfully synthesized and routed to the cell surface, where they displayed EGF-specific, low-affinity ligand-binding domains in contrast to the high- and low-affinity EGF-binding sites of normal EGF receptors. While the EFR kinase was EGF controlled for autophosphorylation and substrate phosphorylation in vitro, in vivo, and in digitonin-treated cells, the ESR kinase was not responsive to EGF. While ESR appeared to recycle to the cell surface upon endocytosis, EGF induced efficient EFR internalization and degradation, and phorbol esters stimulated protein kinase C-mediated downmodulation of EFR. Despite its ligand-inducible kinase activity, EFR was partly EGF independent in mediating mitogenesis and cell transformation, while ESR appeared biologically inactive.  相似文献   

5.
The human bcr gene encodes a protein with serine/threonine kinase activity, CDC24/dbl homology, a GAP domain, and an SH2-binding region. However, the precise physiological functions of BCR are unknown. Coexpression of BCR with the cytoplasmic protein-tyrosine kinase encoded by the c-fes proto-oncogene in Sf-9 cells resulted in stable BCR-FES protein complex formation and tyrosine phosphorylation of BCR. Association involves the SH2 domain of FES and a novel binding domain localized to the first 347 amino acids of the FES N-terminal region. Deletion of the homologous N-terminal BCR-binding domain from v-fps, a fes-related transforming oncogene, abolished transforming activity and tyrosine phosphorylation of BCR in vivo. Tyrosine phosphorylation of BCR in v-fps-transformed cells induced its association with GRB-2/SOS, the RAS guanine nucleotide exchange factor complex. These data provide evidence that BCR couples the cytoplasmic protein-tyrosine kinase and RAS signaling pathways.  相似文献   

6.
Avian erythroblastosis virus (AEV) induces erythroblastosis and fibrosarcomas. The viral erbB protein is required for AEV-mediated oncogenesis. To explore the structural aspects of the v-erbB polypeptide necessary for its oncogenic function, we created a series of small in-frame insertions in different domains of the v-erbB oncogene. AEV genomes bearing lesions within the v-erbB kinase domain demonstrated a drastically decreased ability to transform avian fibroblasts, establishing a functional role for this structurally conserved oncogene domain. In contrast, mutations in the extracellular domain, between the transmembrane region and the kinase domain, or at the extreme C terminus of the v-erbB protein had no effect on AEV-mediated fibroblast transformation. One lesion within the v-erbB kinase domain, a 10-amino acid insertion, produced a temperature-sensitive mutant capable of fibroblast transformation at 36 degrees C but not at 41 degrees C, suggesting that small in-frame insertions have general utility for the in vitro creation of conditional mutants.  相似文献   

7.
H K Shu  R J Pelley    H J Kung 《Journal of virology》1991,65(11):6173-6180
The v-erbB oncogene isolated from the R (or ES4) strain of avian erythroblastosis virus is capable of inducing erythroleukemia and fibrosarcomas. This oncogene differs from the proto-oncogene c-erbB, the avian homolog of the epidermal growth factor receptor, by its lack of an intact ligand-binding domain as well as additional alterations in its cytoplasmic coding sequences. By contrast, the insertionally activated c-erbB, a variant oncogene, which encodes a product that also lacks the ligand-binding domain but is otherwise unaltered in its cytoplasmic coding sequences, is capable of inducing leukemia but cannot induce sarcomas. In this report, we show that the critical changes for activating the sarcomagenic potential displayed by v-erbB R are two point mutations within the tyrosine kinase domain and an internal deletion of 21 amino acids in the carboxyl-terminal regulatory domain. The removal of the carboxyl-terminal autophosphorylation sites is not obligatory. These activating mutations (Arg-263 to His, Ile-384 to Ser, and the deletion of residues 494 to 514), when introduced singly into the insertionally activated c-erbB, all dramatically increase fibroblast-transforming potential. Arg-263 resides near the highly conserved HRD motif of the kinase domain, and its mutation to His increases the autophosphorylation activity. The other two mutations do not alter the intrinsic kinase activity and presumably affect other aspects of the receptor involved in growth signaling. Therefore, the high transforming potential of v-erbB R is a consequence of synergism among multiple activating mutations.  相似文献   

8.
Multiple SH2-mediated interactions in v-src-transformed cells.   总被引:7,自引:0,他引:7       下载免费PDF全文
The Src homology 2 (SH2) domain is a noncatalytic region which is conserved among a number of signaling and transforming proteins, including cytoplasmic protein-tyrosine kinases and Ras GTPase-activating protein (GAP). Genetic and biochemical data indicate that the SH2 domain of the p60v-src (v-Src) protein-tyrosine kinase is required for full v-src transforming activity and may direct the association of v-Src with specific tyrosine-phosphorylated proteins. To test the ability of the v-Src SH2 domain to mediate protein-protein interactions, v-Src polypeptides were expressed as fusion proteins in Escherichia coli. The bacterial v-Src SH2 domain bound a series of tyrosine-phosphorylated proteins in a lysate of v-src-transformed Rat-2 cells, including prominent species of 130 and 62 kDa (p130 and p62). The p130 and p62 tyrosine-phosphorylated proteins that complexed v-Src SH2 in vitro also associated with v-Src in v-src-transformed Rat-2 cells; this in vivo binding was dependent on the v-Src SH2 domain. In addition to binding soluble p62 and p130, the SH2 domains of v-Src, GAP, and v-Crk directly recognized these phosphotyrosine-containing proteins which had been previously denatured and immobilized on a filter. In addition, the SH2 domains of GAP and v-Crk bound to the GAP-associated protein p190 immobilized on a nitrocellulose membrane. These results show that SH2 domains bind directly to tyrosine-phosphorylated proteins and that the Src SH2 domain can bind phosphorylated targets of the v-Src kinase domain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The P130gag-fps protein-tyrosine kinase of Fujinami sarcoma virus contains an N-terminal fps-specific domain (Nfps) that is important for oncogenicity. The N-terminal 14 amino acids of p60v-src, which direct myristylation and membrane association, can replace the gag-Nfps sequences of P130gag-fps (residues 1 to 635), producing a highly transforming src-fps polypeptide. Conversely, gag-Nfps can restore modest transforming activity to a nonmyristylated v-src polypeptide. These results emphasize the modular construction of protein-tyrosine kinases and indicate that Nfps, possibly in conjunction with gag, functions in the subcellular localization of P130gag-fps.  相似文献   

10.
The v-abl and v-src oncogenes encode protein-tyrosine kinases that possess different biological properties in spite of their high degree of amino acid conservation. To correlate functional differences with structural domains of the two oncogenes, we recombined v-abl and v-src just downstream of the lysines in their ATP-binding sites, within the kinase domain. The biological activity of the chimeric genes was studied and compared with that of v-src and v-abl. The v-src/v-abl recombinant shared with v-src and v-abl the ability to transform fibroblasts. In addition, like v-abl, it transformed lymphoid cells and relieved a hematopoietic cell line of its interleukin 3 requirement. In contrast, the reciprocal construct, v-abl/v-src, was transformation defective. Lack of biological activity correlated with formation of a stable complex between the chimeric protein and two cellular proteins and with low kinase activity. We conclude that the specificity within the kinase domain determines the particular biological behavior of protein-tyrosine kinase oncogenes.  相似文献   

11.
The c-abl proto-oncogene encodes a cytoplasmic tyrosine kinase which is homologous to the src gene product in its kinase domain and in the upstream kinase regulatory domains SH2 (src homology region 2) and SH3 (src homology region 3). The murine v-abl oncogene product has lost the SH3 domain as a consequence of N-terminal fusion of gag sequences. Deletion of the SH3 domain is sufficient to render the murine c-abl proto-oncogene product transforming when myristylated N-terminal membrane localization sequences are also present. In contrast, the human BCR/ABL oncogene of the Philadelphia chromosome translocation has an intact SH3 domain and its product is not myristylated at the N terminus. To analyze the contribution of BCR-encoded sequences to BCR/ABL-mediated transformation, the effects of a series of deletions and substitutions were assessed in fibroblast and hematopoietic-cell transformation assays. BCR first-exon sequences specifically potentiate transformation and tyrosine kinase activation when they are fused to the second exon of otherwise intact c-ABL. This suggests that BCR-encoded sequences specifically interfere with negative regulation of the ABL-encoded tyrosine kinase, which would represent a novel mechanism for the activation of nonreceptor tyrosine kinase-encoding proto-oncogenes.  相似文献   

12.
Expression of pp60v-src, the transforming protein of Rous sarcoma virus, arrests the growth of the yeast Saccharomyces cerevisiae. To determine the basis of this growth arrest, yeast strains were constructed that expressed either wild-type v-src or various mutant v-src genes under the control of the galactose-inducible, glucose repressible GAL1 promoter. When shifted to galactose medium, cells expressing wild-type v-src ceased growth immediately and lost viability, whereas cells expressing a catalytically inactive mutant (K295M) continued to grow normally, indicating that the kinase activity of pp60v-src is required for its growth inhibitory effect. Mutants of v-src altered in the SH2/SH3 domain (XD4, XD6, SPX1, and SHX13) and a mutant lacking a functional N-terminal myristoylation signal (MM4) caused only a partial inhibition of growth, indicating that complete growth inhibition requires either targeting of the active kinase or binding of the kinase to phosphorylated substrates, or both. Cells arrested by v-src expression displayed aberrant microtubule structures, alterations in DNA content and elevated p34CDC28 kinase activity. Immunoblotting with antiphosphotyrosine antibody showed that many yeast proteins, including the p34CDC28 kinase, became phosphorylated at tyrosine in cells expressing v-src. Both the growth inhibition and the tyrosine-specific protein phosphorylation observed following v-src expression were reversed by co-expression of a mammalian phosphotyrosine-specific phosphoprotein phosphatase (PTP1B). However a v-src mutant with a small insertion in the catalytic domain (SRX5) had the same lethal effect as wild-type v-src, yet induced only very low levels of protein-tyrosine phosphorylation. These results indicate that inappropriate phosphorylation at tyrosine is the primary cause of the lethal effect of pp60v-src expression but suggest that only a limited subset of the phosphorylated proteins are involved in this effect.  相似文献   

13.
pp60v-src is a nonreceptor protein tyrosine kinase that can transform both chicken and rodent fibroblasts. The src homology 2 (SH2) domain of this protein serves a critical role in the regulation of protein tyrosine kinase activity. The host range proteins pp60v-src-L, which contains a deletion of a highly conserved residue (Phe-172) in the SH2 domain, and pp60v-src-PPP, which contains a change from a Leu to a Phe at amino acid 186 in the SH2 domain, transform chicken but not rat cells and have slightly reduced kinase activity measured in vitro. The data presented here show that these altered proteins require autophosphorylation on Tyr-416 for high kinase activity and transforming ability. In the absence of autophosphorylation, there is a further decrease of at least threefold in in vitro kinase activity relative to the phosphorylated host range parental protein, no morphological transformation, a reduction in anchorage independent growth, and no disruption of the actin cytoskeleton. In addition, these SH2 mutations abolish the ability of the SH2 domain to bind a phosphorylated peptide that corresponds to the autophosphorylation site of pp60src. Thus, like mutant alleles of c-src encoding transformation competent proteins, and unlike v-src, transformation by pp60v-src-F172 delta and pp60v-src-L186F is dependent on phosphorylation of Y-416 for high kinase activity and transformation ability. The dependence of transformation on phosphotyrosine is not a reflection of an intramolecular interaction between the autophosphorylation site and the SH2 domains since purified SH2 domains are incapable of binding phosphorylated autophosphorylation site peptides in vitro.  相似文献   

14.
Recent work has implicated the activated ras oncogene, whose gene product is a G-protein located in the plasma membrane, as well as the activated raf oncogene, whose gene product is a membrane-associated protein kinase, in contributing to radioresistance. Another transforming oncogene whose gene product is localized to the plasma membrane is v-src. We have examined a rat fibroblast line (RAT-1) infected with an avian sarcoma virus carrying a temperature-sensitive mutation in the v-src tyrosine kinase domain (LA-24). At 40 degrees C, LA-24 cells have a flat morphology and grow as a contact-inhibited monolayer, while at 35 degrees C, LA-24 cells have a transformed morphology, lose contact inhibition, grow in soft agar, and exhibit 3.5-fold higher tyrosine kinase activity. The parental RAT-1 line, not infected by the virus, grows at both temperatures as a contact-inhibited monolayer. This well-characterized system represents a good model for examining the effect of v-src transformation on radiosensitivity. RAT-1 and LA-24 cells grown at 35 and 40 degrees C were irradiated with graded doses of radiation, and clonogenic survival was assayed. For LA-24 cells grown at 35 and 40 degrees C, and for RAT-1 cells grown at 35 and 40 degrees C, calculated D0, n, alpha, and beta values did not differ significantly. To determine whether there might be differences in radiation damage repair capacity too subtle to detect by comparing radiation survival curves, sublethal damage repair capacity was assessed. There was no difference in sublethal damage repair capacity for LA-24 cells grown at 35 or 40 degrees C. Other studies have associated multidrug resistance with radioresistance. We have examined the radiation sensitivity of two colchicine-resistant LA-24 clones with four- to fivefold amplification of the P-glycoprotein gene, which are four-to fivefold more resistant to colchicine than the parental LA-24 line. In these multidrug-resistant clones, v-src activation does appear to increase radiation resistance. This did not appear to be due to alteration in cell cycle kinetics. We conclude that oncogene activation, or even protein kinase activity per se, does not necessarily lead to radiation resistance. Rather, radiation resistance following oncogene activation depends upon the oncogene and cell line studied, and perhaps upon specific protein phosphorylation.  相似文献   

15.
Proteins encoded by oncogenes such as v-fps/fes, v-src, v-yes, v-abl, and v-fgr are cytoplasmic protein tyrosine kinases which, unlike transmembrane receptors, are localized to the inside of the cell. These proteins possess two contiguous regions of sequence identity: a C-terminal catalytic domain of 260 residues with homology to other tyrosine-specific and serine-threonine-specific protein kinases, and a unique domain of approximately 100 residues which is located N terminal to the kinase region and is absent from kinases that span the plasma membrane. In-frame linker insertion mutations in Fujinami avian sarcoma virus which introduced dipeptide insertions into the most stringently conserved segment of this N-terminal domain in P130gag-fps impaired the ability of Fujinami avian sarcoma virus to transform rat-2 cells. The P130gag-fps proteins encoded by these transformation-defective mutants were deficient in protein-tyrosine kinase activity in rat cells. However v-fps polypeptides derived from the mutant Fujinami avian sarcoma virus genomes and expressed in Escherichia coli as trpE-v-fps fusion proteins displayed essentially wild-type enzymatic activity, even though they contained the mutated sites. Deletion of the N-terminal domain from wild-type and mutant v-fps bacterial proteins had little effect on autophosphorylating activity. The conserved N-terminal domain of P130gag-fps is therefore not required for catalytic activity, but can profoundly influence the adjacent kinase region. The presence of this noncatalytic domain in all known cytoplasmic tyrosine kinases of higher and lower eucaryotes argues for an important biological function. The relative inactivity of the mutant proteins in rat-2 cells compared with bacteria suggests that the noncatalytic domain may direct specific interactions of the enzymatic region with cellular components that regulate or mediate tyrosine kinase function.  相似文献   

16.
L Ellis  A Levitan  M H Cobb    P Ramos 《Journal of virology》1988,62(5):1634-1639
The human insulin receptor (IR) is a transmembrane glycoprotein, whose cytoplasmic domain contains an insulin-activated protein-tyrosine kinase (EC 2.7.1.112). By the use of an appropriately engineered baculovirus expression vector, a soluble cytoplasmic derivative of this domain was expressed in the insect cell line Spodoptera frugiperda (Sf9). At 24 to 48 h after Sf9 cells were infected with recombinant virus, a protein of the size expected for this domain (approximately 48 kilodaltons) constituted a major band when total cell lysates of metabolically labeled cells were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography. This protein (designated AchIRPTK) was immunoprecipitated by three monoclonal antibodies, each of which recognizes a distinct antigenic site of the IR cytoplasmic domain and requires the native structure of the protein for recognition and one of which binds at or near the physiologically relevant site(s) of IR autophosphorylation. In vivo, AchIRPTK was phosphorylated on both tyrosine and serine residues. When affinity purified, the kinase was active in vitro; it autophosphorylated exclusively on tyrosine residues, and phosphorylated the exogenous substrates histone H2b and poly(Glu-Tyr). The expression of an active IR protein-tyrosine kinase molecule in this heterologous cell system provides an efficient experimental method for producing this domain in quantity for enzymatic and structural studies.  相似文献   

17.
Expression of mutant avian c-erbB1 genes results in tissue-specific transformation in chickens. Site-directed mutagenesis was used to generate kinase-defective mutants of several tissue-specific v-erbB transforming mutants by replacement of the ATP-binding lysine residue in the kinase domain with an arginine residue. These kinase-defective v-erbB mutants were analyzed for their in vitro and in vivo transforming potentials. Specifically, kinase-defective mutants of erythroleukemogenic, hemangioma-inducing, and sarcomagenic v-erbB genes were assessed for their oncogenic potential. In vitro transformation potential was assessed by soft-agar colony formation in primary cultures of chick embryo fibroblasts (CEF). In vivo transformation potential was determined by infection of 1-day-old line 0 chicks with concentrated recombinant retrovirus and then monitoring of birds for tumor formation. These transformation assays demonstrate that kinase activity is absolutely essential for transformation by tissue-specific transforming mutants of the avian c-erbB1 gene. Since all of the tissue-specific v-erbB mutants characterized to date exhibit tyrosine kinase activity in vitro but do not transform all tissues in which they are expressed, we conclude that v-erbB-associated tyrosine kinase activity may be necessary but is not sufficient to induce tumor formation.  相似文献   

18.
A phosphoinositide kinase specific for the D-3 position of the inositol ring, phosphatidylinositol (PI) 3-kinase, associates with activated receptors for platelet-derived growth factor, insulin, and colony-stimulating factor 1, with products of the oncogenes src, fms, yes, crk, and with polyomavirus middle T antigen. Efficient fibroblast transformation by proteins of the abl and src oncogene families requires activation of their protein-tyrosine kinase activity and membrane association via an amino-terminal myristoylation. We have demonstrated that the PI 3-kinase directly associates with autophosphorylated, activated protein-tyrosine kinase variants of the abl protein. In vivo, this association leads to accumulation of the highly phosphorylated products of PI 3-kinase, PI-3,4-bisphosphate and PI-3,4,5-trisphosphate, only in myristoylated, transforming abl protein variants. Myristoylation thus appears to be required to recruit PI 3-kinase activity to the plasma membrane for in vivo activation and correlates with the mitogenicity of the abl protein variants.  相似文献   

19.
Previous studies showed that the amino-terminal domain of Rous sarcoma virus p60v-src involved in myristylation and membrane association of the protein is required for morphological transformation and anchorage independence. Analysis of src delection mutants revealed that the amino-terminal one-third of p60v-src, including the membrane-binding domain, is not essential for induction of cell proliferation. These results demonstrated that, in contrast to the cellular target(s) involved in morphological transformation and anchorage independence, the target(s) involved in mitogenic activity is accessible to nonmyristylated src proteins.  相似文献   

20.
The expression of p60v-src in chicken cells infected with Rous sarcoma virus causes stimulation of cell proliferation, morphological alteration, and anchorage independence. PA101 and PA104 are temperature-sensitive variants encoding mutant p60v-src proteins that are partially defective in the induction of these transformation parameters. To define the structural basis for the transformation defectiveness of the p60v-src mutants, the v-src genes of PA101 and PA104 were molecularly cloned and analyzed. Amino- and carboxy-terminal coding regions of the cloned mutant genes were exchanged with the corresponding regions of cloned wild-type v-src and chicken c-src genes, reconstructed into viral DNA, and expressed in infected cells maintained at various temperatures. This analysis revealed that lesions within the tyrosine kinase domains of the two mutant proteins confer temperature sensitivity on all three transformation functions of p60v-src. An amino-terminal region of the PA101 mutant protein, which coincides with the proposed modulatory domain and appears to interact with the kinase domain, affects morphological alteration in a temperature-independent manner. Our results suggest that the function of the kinase domain is essential to all three parameters examined, whereas the amino-terminal domain is important in determining cell morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号