首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Physiologia plantarum》1990,79(2):A74-A77
  相似文献   

2.
Nitrogen uptake     
B. L. Haines 《Oecologia》1977,26(4):295-303
Summary Nitrogen uptake from applied nutrient solutions was evaluated in two old fields, in a pine plantation, and in a hardwood stand, to test the idea that plant communities become more efficient trappers and retainers of plant nutrients during succession. Uptake was estimated as the difference between nutrient concentrations in water collected from beneath soil profiles with and without roots by lysimeters within each successional stage. Results suggest that nitrate uptake decreased while ammonia uptake increased with succession. This apparent shift from a nitrate to an ammonia nitrogen economy during succession has been reported by other workers and is evolutionarily significant as an energy, nitrogen, and cation saving mechanism.  相似文献   

3.
The concept of plant nitrogen productivity was introduced atthe end of the 1970s to interpret the dependency of plant growthon internal nitrogen. It is defined as the increase in plantdry matter per unit time and per unit plant nitrogen content.Recently, plant nitrogen productivity has been expressed asthe product of two terms: the leaf nitrogen ratio, which isthe proportion of the plant's nitrogen present in the leaves,and the leaf nitrogen productivity, which is defined as theincrease in plant dry matter per unit time and leaf nitrogencontent. In the present paper we use two data sets obtainedfrom C3 herbaceous species to evaluate the relative importanceof variation in leaf nitrogen ratio and leaf nitrogen productivityin determining interspecific variation in plant nitrogen productivity.Further, we analyse to what extent leaf and plant nitrogen productivitiesdepend on photosynthetic nitrogen use efficiency. Results showthat in all cases, photosynthetic nitrogen use efficiency isa major determinant of both plant and leaf nitrogen productivities.A positive relationship between leaf nitrogen ratio and plantnitrogen productivity was found only when comparisons were madeover broad taxonomic groups.Copyright 1995, 1999 Academic Press Interspecific variation, leaf nitrogen ratio, nitrogen productivity, photosynthetic nitrogen use efficiency  相似文献   

4.
Nitrogen (N2) fixation is a major source of available N in ecosystems that receive low amounts of atmospheric N deposition. In boreal forest and subarctic tundra, the feather moss Hylocomium splendens is colonized by N2 fixing cyanobacteria that could contribute fundamentally to increase the N pool in these ecosystems. However, N2 fixation in mosses is inhibited by N input. Although this has been shown previously, the ability of N2 fixation to grow less sensitive towards repeated, increased N inputs remains unknown. Here, we tested if N2 fixation in H. splendens can recover from increased N input depending on the N load (0, 5, 20, 80, 320 kg N ha-1 yr-1) after a period of N deprivation, and if sensitivity towards increased N input can decrease after repeated N additions. Nitrogen fixation in the moss was inhibited by the highest N addition, but was promoted by adding 5 kg N ha-1 yr-1, and increased in all treatments during a short period of N deprivation. The sensitivity of N2 fixation towards repeated N additions seem to decrease in the 20 and 80 kg N additions, but increased in the highest N addition (320 kg N ha-1 yr-1). Recovery of N in leachate samples increased with increasing N loads, suggesting low retention capabilities of mosses if N input is above 5 kg N ha-1 yr-1. Our results demonstrate that the sensitivity towards repeated N additions is likely to decrease if N input does not exceed a certain threshold.  相似文献   

5.
Long-Term Nitrogen Additions and Nitrogen Saturation in Two Temperate Forests   总被引:50,自引:6,他引:50  
This article reports responses of two different forest ecosystems to 9 years (1988–96) of chronic nitrogen (N) additions at the Harvard Forest, Petersham, Massachusetts. Ammonium nitrate (NH4NO3) was applied to a pine plantation and a native deciduous broad-leaved (hardwood) forest in six equal monthly doses (May–September) at four rates: control (no fertilizer addition), low N (5 g N m-2 y-1), high N (15 g N m-2 y-1), and low N + sulfur (5 g N m-2 y-1 plus 7.4 g S m-2 y-1). Measurements were made of net N mineralization, net nitrification, N retention, wood production, foliar N content and litter production, soil C and N content, and concentrations of dissolved organic carbon (DOC) and nitrogen (DON) in soil water. In the pine stand, nitrate losses were measured after the first year of additions (1989) in the high N plot and increased again in 1995 and 1996. The hardwood stand showed no significant increases in nitrate leaching until 1995 (high N only), with further increases in 1996. Overall N retention efficiency (percentage of added N retained) over the 9-year period was 97–100% in the control and low N plots of both stands, 96% in the hardwood high N plot, and 85% in the pine high N plot. Storage in aboveground biomass, fine roots, and soil extractable pools accounted for only 16–32% of the added N retained in the amended plots, suggesting that the one major unmeasured pool, soil organic matter, contains the remaining 68–84%. Short-term redistribution of 15N tracer at natural abundance levels showed similar division between plant and soil pools. Direct measurements of changes in total soil C and N pools were inconclusive due to high variation in both stands. Woody biomass production increased in the hardwood high N plot but was significantly reduced in the pine high N plot, relative to controls. A drought-induced increase in foliar litterfall in the pine stand in 1995 is one possible factor leading to a measured increase in N mineralization, nitrification, and nitrate loss in the pine high N plot in 1996. Received 2 April 1999; Accepted 29 October 1999.  相似文献   

6.
外来入侵植物的氮代谢及其土壤氮特征   总被引:7,自引:1,他引:6  
研究了4种外来入侵植物(五爪金龙、南美蟛蜞菊、金腰箭和马缨丹)和1种本地植物鸡矢藤(对照)的氮代谢及其土壤氮特征.结果表明:外来人侵植物的组织硝酸还原酶活性、根际土壤NH4-N、NO3-N含量、蛋白酶活性和脲酶活性均较高,分别为鸡矢藤的1.65~4.34、1.56~2.15、1.72~3.11、1.43~3.23和1.41~3.33倍,而植物组织硝态氮含量则较低,仅为鸡矢藤的17.5%~50.6%.相关分析表明:植物组织硝酸还原酶活性与根际土壤总氮、NH4-N、NO3-N含量呈显著正相关(P<0.05),与蛋白酶活性和脲酶活性呈极显著正相关(P<0.01).这说明,外来植物入侵使土壤氮代谢加快,氮的生物有效性增强,氮同化能力提高,并且较好地将植物体氮素代谢与土壤氮素代谢协调起来.因此,较强的氮素同化能力与加速土壤氮素的转化可能是植物成功入侵的重要机制之一.  相似文献   

7.
As nitrogen is known to be a limiting factor for plant growth, we were interested in the relationship between soil microbial activity and the nitrogen assimilation of 5 different halophytes from 4 saline sites near the lake “Neusiedlersee”, Austria. The following were studied between May and October 1985: nitrogen fixation (15N2 and acetylene reduction): N-mineralization; several soil characteristics and in vivo nitrate reductase activity of roots and shoots of these plants. NO?3, org. N- and carboxylate contents of both roots and shoots, as well as the effect of NO?3-fertilization on the amounts of these substances, were determined on plants growing in the field during a 3-day period in September 1985. Fertilization led to a decrease in acetylene reduction activity at most sites, and an increase in the nitrate reductase activity of the shoots of all plants. Overall, carboxylate and organic nitrogen contents of these halophytes did not change in response to fertilization. Only in the roots of Aster tripolium and Atriplex hastata was there a marked increase in the nitrate reductase activity in response to fertilization. Species growing at the same site, such as Plantago maritima and Lepidium crassifolium showed contrasting levels of assimilatory activity. Apparent low rates of ammonification and nitrification were detected in soils from the 4 sites. The results are discussed in relation to the nitrogen and carbon economies of the microorganisms and plants.  相似文献   

8.
9.
Symbiotic Nitrogen Fixation   总被引:13,自引:1,他引:12       下载免费PDF全文
  相似文献   

10.
11.
Xylem sap composition was examined in nodulated and nonnodulated cowpea (Vigna unguiculata [L.] Walp.) plants receiving a range of levels of NO3 and in eight other ureide-forming legumes utilizing NO3 or N2 as sole source of nitrogen. A 15N dilution technique determined the proportions of plant nitrogen derived from N2 in the nodulated cowpeas fed NO3. Xylem sap composition of NO3-fed, nodulated cowpea varied predictably with the relative extents to which N2 and NO3 were being utilized. The ratios of asparagine to glutamine (N/N) and of NO3 to ureide (N/N) in xylem sap increased with increasing dependence on NO3 whereas per cent of xylem nitrogen as ureide and the ratio of ureide plus glutamine to asparagine plus NO3 (N/N) in xylem sap increased with increasing dependence on N2 fixation. The amounts of NO3 and ureides stored in leaflets, stems plus petioles, and roots of cowpea varied in a complex manner with level of NO3 and the presence or absence of N2 fixation. All species showed higher proportions of organic nitrogen as ureide and several-fold lower ratios of asparagine to glutamine in their xylem sap when relying on N2 than when utilizing NO3. In nodulated (minus nitrate) cowpea and mung bean (Vigna radiata [L.] Wilczek) the percentage of xylem nitrogen as ureide remained constant during growth but the ratio of asparagine to glutamine varied considerably. The biochemical significance of the above differences in xylem sap composition was discussed.  相似文献   

12.
有机物料和氮肥相互作用对微生物体氮的影响*   总被引:5,自引:0,他引:5  
李世清  李生秀   《微生物学通报》2000,27(3):157-162
培养和田间试验表明,有机物料(作物茎叶和有机肥)和氮肥对土壤微生物体氮的影响有着显著的交互作用。交互作用的大小与有机物料和氮肥的种类有关,因面也与有效碳源和矿质氮的比例有关。有机物料与硝态氮的交互作用大,而与铵态氮的交互作用小,交者是后者的2.7倍,这种8差异与微生物对两种形态氮的固定不同有关,有机物料C/N比的影响表现为随着C/N比增大,交互作用增加,并且在有机物料分解前期的交互作用大于中、后期  相似文献   

13.
Zhang  Li  Ni  Ming  Zhu  Tongbin  Xu  Xingliang  Zhou  Shurong  Shipley  Bill 《Ecosystems》2022,25(1):172-183
Ecosystems - Plant nitrogen (N) uptake is a critical ecosystem function, especially when terrestrial ecosystems are threatened worldwide by increasing anthropogenic N deposition. However, the...  相似文献   

14.
The nitrogen use efficiencies (NUE) of N2 fixation, primary NH 4+ assimilation and NO 3 assimilation are compared. The photon and water costs of the various biochemical and transport processes involved in plant growth, N-assimilation, pH regulation and osmolarity generation, per unit N assimilated are respectively likely to be around 5 and 7% greater for N2 fixation than for a combination of NH 4+ and root and shoot NO 3 assimilation as occurs with most crops. Studies on plant and rhizobial genes involved in nodulation and N2 fixation may lead to more rapid nodulation, production of more stress-tolerant N2 fixing systems and transfer of the hydrogenase system to rhizobium/legume symbioses which currently do not have this ability. The activity of an uptake hydrogenase is predicted to decrease the photon cost of diazotrophic plant growth by about 1%.  相似文献   

15.
Nitrogen Turnover in Marine and Brackish Habitats: I. Nitrogen Fixation   总被引:2,自引:0,他引:2  
STEWART  W. D. P. 《Annals of botany》1965,29(2):229-239
Potential nitrogen-fixing genera were found to be abundant intwo natural populations of blue-green algae, one from a rockycoast and the other from a sand-dune slack. 15N studies confirmedthat these populations fixed nitrogen in the laboratory andin the field. Preliminary quantitative data on Fixation in thefield suggest that the algae contribute appreciable quantitiesof fixed nitrogen to the environments in which they occur.  相似文献   

16.
Switchgrass, Panicum virgatum L., grown for biomass has been extensively researched where the annual precipitation >760 mm and the climate varies from humid to moist-subhumid. Research is needed for areas that receive <700 mm of precipitation, where the climate varies from dry-subhumid to semiarid. The objectives were to determine (1) the effect of nitrogen fertilization on biomass production, (2) the effect of residual nitrogen on biomass production, (3) the nitrogen yield from harvested biomass, and (4) the concentration of soil organic carbon (SOC) from switchgrass plots. Plots were fertilized annually with nitrogen at the rates of 0, 40, 80, and 120 kg ha?1 from 2008 to 2011 and unfertilized from 2012 to 2015. The biomass yield varied with N rate × production year interactions (P < 0.05), and biomass yield as a function of N rate was either linear or curvilinear depending upon production year. When fertilized, the biomass yield averaged 4.4, 9.4, 11.6, and 13.2 ± 0.4 Mg ha?1 for the 0, 40, 80, and 120 kg ha?1 N rates, respectively. Residual nitrogen sustained high biomass yields for 1 year after fertilization ceased. The nitrogen harvested in biomass varied with N rate × production year interactions (P < 0.05), and the harvested nitrogen yield as a function of N rate was linear each year. Fertilization increased the concentration of SOC an average of 1.0 ± 0.2 mg g?1 of soil. The data suggest that producers could occasionally skip a year of nitrogen fertilization without detrimentally impacting the production of switchgrass biomass.  相似文献   

17.
Current global nitrogen fertilizer use has reached approximately one hundred billion kg per annum. In many agricultural systems, a very substantial portion of this applied nitrogen fertilizer is lost from soil to groundwaters, rivers and oceans. While soil physicochemical properties play a significant part in these losses, there are several characteristic features of plant nitrogen transporter function that facilitate N losses. Nitrate and ammonium efflux from roots result in a reduction of net nitrogen uptake. As external nitrate and ammonium concentrations, respectively, are increased, particularly into the range of concentrations that are typical of agricultural soils, elevated rates of nitrate and ammonium efflux result. The rapid down-regulation of high-affinity influx as plants become nitrogen replete further reduces the root's capacity to acquire external nitrogen; only nitrogen-starved roots absorb with both high capacity and high affinity. The results of studies using molecular biology methods demonstrate that genes encoding nitrate and ammonium transporters are rapidly down-regulated when nitrogen is resupplied to nitrogen-starved plants. Provision of ammonium to roots of plants actively absorbing nitrate imposes a block on nitrate uptake, the extent of which depends on the ammonium concentration, thus further reducing the efficient utilization of soil nitrate. During the daily variation of incoming light and during periods of low incident irradiation (i.e. heavy cloud cover) the expression levels of genes encoding nitrate and ammonium transporters, and rates of nitrate and ammonium uptake, are substantially reduced. Low temperatures reduce growth and nitrogen demand, and appear to discriminate against high-affinity nitrogen influx. In sum, these several factors conspire to limit rates of plant nitrogen uptake to values that are well below capacity. These characteristics of the plant's nitrogen uptake systems facilitate nitrogen losses from soils.  相似文献   

18.
研究了施氮和不施氮条件下6个杂交小麦及其7个亲本不同器官的氮转运,结果表明:施氮时叶中的氮转运受到极显著的促进,其氮转运量为不施氮的4倍,总麦草90%以上的氮转运来自叶片;无论施氮与否,叶中氮的转运率和贡献率最大,穗壳次之,施氮与否的同一器官并无显著差异;不施氮的各器官氮的转运量、转运率和贡献率多表现正的杂种优势,施氮的多呈负向优势.  相似文献   

19.
外源供氮水平对大豆生物固氮效率的影响   总被引:2,自引:0,他引:2  
采用稳定性同位素15N自然丰度(15N natural abundance)技术,以小麦为参照植物,研究了盆栽条件下,在外源供氮0、0.8、2.0、4.0 mmol·L-1水平下大豆的生物固氮百分率以及生物固氮数量对植物氮的贡献.结果显示:(1)0~2.0 mmol·L-1外源供氮可显著提高大豆的生物量和固氮百分率,且于2.0 mmol·L-1处理下地上生物量最高,达104 g·m-2,比CK增加了48%;(2)在0.8 mmol·L-1的供氮水平下大豆生物固氮量最高,为1.318 g·m-2,占大豆植株总吸氮量的70.4%,而在4.0 mmol·L-1供氮水平下生物固氮量仅占植株总吸氮量的44%;随供氮水平的升高,大豆生物固氮量占总吸氮量的比重下降,说明在高水平外源氮下,大豆生物固氮能力受到抑制;(3)大豆生物固氮百分率、固氮数量及吸氮数量与地上生物量间均呈显著正相关关系.结果表明,应用稳定性15N同位素技术可以定量大豆的生物固氮效率,根瘤菌接种配合低浓度外源氮有利于大豆生物固氮潜能的释放,对提高大豆产量、减少化肥投入有积极的指导意义.  相似文献   

20.
Long-term, landscape patterns in inorganic nitrogen (N) availability and N stocks following infrequent, stand-replacing fire are unknown but are important for interpreting the effect of disturbances on ecosystem function. Here, we present results from a replicated chronosequence study in the Greater Yellowstone Ecosystem (Wyoming, USA) directed at measuring inorganic N availability (ion-exchange resin bags) and ecosystem N pools among 77 lodgepole pine stands that varied in age and density. Inorganic N availability ranged from 0.07 to 3.20 μN bag−1 d−1 and nitrate (NO3) was, on average, 65% of total resin-sorbed N. Total ecosystem N stocks (live + detrital + soil) averaged 109.9 ± 3.0 g N m−2 (range = 63.7–185.8 g N m−2). Live N was 14%, detrital N was 29%, and soil N was 57% of total stocks. Soil NO3, total ecosystem N, live N, and detrital N generally increased with stand age, but soil N stocks decreased. Models (AICc) to predict soil N availability and N stocks included soil P, soil Ca, bulk density, and pH in addition to age (adj R 2 ranged from 0.18 to 0.53) and density was included only for live N stocks. Patterns of N stocks and N availability with density were strongest for young stands (<20 years) regenerating from extensive fire in 1988; for example, litterfall N stocks increased with density (adj R 2 = 0.86, P < 0.001) but inorganic N availability declined (adj R 2 = 0.47, P < 0.003). Across the complex Yellowstone landscape, we conclude that N stocks and N availability are best predicted by a combination of local soil characteristics in addition to factors that vary at landscape scales (stand density and age). Overall, total ecosystem N stocks were recovered quickly following stand-replacing fire, suggesting that moderate increases in fire frequency will not affect long-term landscape N storage in Greater Yellowstone. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Author contributions   EAHS, MGT, and MGR conceived the study; DMK performed field research; EAHS and DMK oversaw laboratory analyses and analyzed data; EAHS wrote the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号