首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Base pairing between Escherichia coli RNase P RNA and its substrate.   总被引:14,自引:2,他引:12       下载免费PDF全文
Base pairing between the substrate and the ribozyme has previously been shown to be essential for catalytic activity of most ribozymes, but not for RNase P RNA. By using compensatory mutations we have demonstrated the importance of Watson-Crick complementarity between two well-conserved residues in Escherichia coli RNase P RNA (M1 RNA), G292 and G293, and two residues in the substrate, +74C and +75C (the first and second C residues in CCA). We suggest that these nucleotides base pair (G292/+75C and G293/+74C) in the ribozyme-substrate complex and as a consequence the amino acid acceptor stem of the precursor is partly unfolded. Thus, a function of M1 RNA is to anchor the substrate through this base pairing, thereby exposing the cleavage site such that cleavage is accomplished at the correct position. Our data also suggest possible base pairing between U294 in M1 RNA and the discriminator base at position +73 of the precursor. Our findings are also discussed in terms of evolution.  相似文献   

2.
3.
The three-dimensional folding of Xenopus oocyte 5S rRNA has been examined using the coordination complex Rh(phen)2phi3+ (phen = phenanthroline; phi = phenanthrenequinone diimine) as a structural probe. Rh(phen)2phi3+ binds neither double-helical RNA nor unstructured single-stranded regions of RNA. Instead, the complex targets through photoactivated cleavage sites of tertiary interaction which are open in the major groove and accessible to stacking. The sites targeted by the rhodium complex have been mapped on the wild-type Xenopus oocyte RNA, on a truncated RNA representing the arm of the molecule comprised of helix IV-loop E-helix V, and on several single-nucleotide mutants of the 5S rRNA. On the wild-type 5S rRNA, strong cleavage is found at residues U73, A74, A101, and U102 in the E loop and U80 and G81 in helix IV; additional sites are evident at A22 and A56 in the B loop, C29 and A32 in helix III, and C34, C39, A42, and C44 in the C loop. Given the similarity observed in cleavage between the full 5S RNA and the truncated fragment as well as the absence of any long-range effects on cleavage in mutant RNAs, the results do not support models which involve long-range tertiary interactions. Cleavage results with Rh(phen)2phi3+ do, however, indicate that the apposition of several noncanonical bases as well as stem--loop junctions may result in intimately stacked structures with opened major grooves. In particular, on the basis of cleavage results on mutant RNAs, both loops C and E represent structures where the strands constituting each loop are not independent of one another but are intrinsically structured.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The inclusion of phytase in monogastric animal feed has the benefit of hydrolyzing indigestible plant phytate (myo-inositol 1,2,3,4,5,6-hexakis dihydrogen phosphate) to provide poultry and swine with dietary phosphorus. An ideal phytase supplement should have a high temperature tolerance, allowing it to survive the feed pelleting process, a high specific activity at low pHs, and adequate gastric performance. For this study, the performance of a bacterial phytase was optimized by the use of gene site saturation mutagenesis technology. Beginning with the appA gene from Escherichia coli, a library of clones incorporating all 19 possible amino acid changes and 32 possible codon variations in 431 residues of the sequence was generated and screened for mutants exhibiting improved thermal tolerance. Fourteen single site variants were discovered that retained as much as 10 times the residual activity of the wild-type enzyme after a heated incubation regimen. The addition of eight individual mutations into a single construct (Phy9X) resulted in a protein of maximal fitness, i.e., a highly active phytase with no loss of activity after heating at 62 degrees C for 1 h and 27% of its initial activity after 10 min at 85 degrees C, which was a significant improvement over the appA parental phytase. Phy9X also showed a 3.5-fold enhancement in gastric stability.  相似文献   

5.
Activated human complement-classical-pathway enzyme C1r has previously been shown to undergo autolytic cleavages occurring in the A chain [Arlaud, Villiers, Chesne & Colomb (1980) Biochim. Biophys. Acta 616, 116-129]. Chemical analysis of the autolytic products confirms that the A chain undergoes two major cleavages, generating three fragments, which have now been isolated and characterized. The N-terminal alpha fragment (approx. 210 residues long) has a blocked N-terminus, as does the whole A chain, whereas N-terminal sequences of fragments beta and gamma (approx. 66 and 176 residues long respectively) do not, and their N-terminal sequences were determined. Fragments alpha, beta and gamma, which are not interconnected by disulphide bridges, are located in this order within C1r A chain. Fragment gamma is disulphide-linked to the B chain of C1r, which is C-terminal in the single polypeptide chain of precursor C1r. CNBr cleavage of C1r A chain yields seven major peptides, CN1b, CN4a, CN2a, CN1a, CN3, CN4b and CN2b, which were positioned in that order, on the basis of N-terminal sequences of the methionine-containing peptides generated from tryptic cleavage of the succinylated (3-carboxypropionylated) C1r A chain. About 60% of the sequence of C1r A chain (440-460 residues long) was determined, including the complete sequence of the C-terminal 95 residues. This region shows homology with the corresponding parts of plasminogen and chymotrypsinogen and, more surprisingly, with the alpha 1 chain of human haptoglobin 1-1, a serine proteinase homologue.  相似文献   

6.
MazF is an mRNA interferase that cleaves mRNAs at a specific RNA sequence. MazF from E. coli (MazF‐ec) cleaves RNA at A and CA. To date, a large number of MazF homologs that cleave RNA at specific three‐ to seven‐base sequences have been identified from bacteria to archaea. MazF‐ec forms a dimer, in which the interface between the two subunits is known to be the RNA substrate‐binding site. Here, we investigated the role of the two loops in MazF‐ec, which are closely associated with the interface of the MazF‐ec dimer. We examined whether exchanging the loop regions of MazF‐ec with those from other MazF homologs, such as MazF from Myxococcus xanthus (MazF‐mx) and MazF from Mycobacterium tuberculosis (MazF‐mt3), affects RNA cleavage specificity. We found that exchanging loop 2 of MazF‐ec with loop 2 regions from either MazF‐mx or MazF‐mt3 created a new cleavage sequence at (A/U)(A/U)AA and C in addition to the original cleavage site, A and CA, whereas exchanging loop 1 did not alter cleavage specificity. Intriguingly, exchange of loop 2 with 8 or 12 consecutive Gly residues also resulted in a new RNA cleavage site at (A/U)(A/U)AA and C. The present study suggests a method for expanding the RNA cleavage repertoire of mRNA interferases, which is crucial for potential use in the regulation of specific gene expression and for biotechnological applications. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Uracil-DNA glycosylase (UDG) is a conserved DNA repair enzyme involved in uracil excision from DNA. Here, we report the biochemical characterization of UDG encoded by Bacillus subtilis, a model low G+C Gram-positive organism. The purified enzyme removes uracil preferentially from single-stranded DNA over double-stranded DNA, exhibiting higher preference for U:G than U:A mismatches. Furthermore, we have identified key amino acids necessary for B. subtilis UDG activity. Our results showed that Asp-65 and His-187 are catalytic residues involved in glycosidic bond cleavage, whereas Phe-78 would participate in DNA recognition. Recently, it has been reported that B. subtilis phage φ29 encodes an inhibitor of the UDG enzyme, named protein p56, whose role has been proposed to ensure an efficient viral DNA replication, preventing the deleterious effect caused by UDG when it eliminates uracils present in the φ29 genome. In this work, we also show that a φ29-related phage, GA-1, encodes a p56-like protein with UDG inhibition activity. In addition, mutagenesis analysis revealed that residue Phe-191 of B. subtilis UDG is critical for the interaction with φ29 and GA-1 p56 proteins, suggesting that both proteins have similar mechanism of inhibition.  相似文献   

8.
Sequence analysis of 5'-[32P] labeled tRNA and eukaryotic mRNA using an adaptation of a method recently described by Donis-Keller, Maxam and Gilbert for mapping guanines, adenines and pyrimidines from the 5'-end of an RNA is described. In addition, a technique utilizing two-dimensional polyacrylamide gel electrophoresis for identification of pyrimidines within a sequence is described. 5'-[32P] Labeled rabbit beta-globin mRNA and N. crassa mitochondrial initiator tRNA were partially digested with T1- RNase for cleavage at G residues, with U2-RNase for cleavage at A residues, with an extracellular RNase from B. cereus for cleavage at pyrimidine residues and with T2-RNase or with alkali for cleavage at all four residues. The 5'-[32P] labeled partial digestion products were separated according to their size, by electrophoresis in adjacent lanes of a polyacrylamide slab gel and the location of G's, A's and of pyrimidines extending 60-80 nucleotides from the 5'-end of the RNA determined. Two-dimensional polyacrylamide gel electrophoresis was used to separate the 5'-[32P] labeled fragments present in partial alkali digests of a 5'-[32P] labeled mRNA. The mobility shifts corresponding to the difference of a C residue were distinct from those corresponding to a U residue and this formed the basis of a method for distinguishing between the pyrimidines.  相似文献   

9.
10.
The acid base behavior of phytate has been studied (at t=25 degrees C by potentiometry, ISE-H+ glass electrode) in NaNO3aq at different ionic strengths (0.1 < or = I/mol L(-1) < or = 1.0). The interactions with copper(II) were investigated in the same experimental conditions in different metal to ligand (Phy) ratios (1:1 < or = Cu2+ :Phy < or = 4:1), by using both ISE-H+ and ISE-Cu2+ electrodes. Phytate acid base behavior in sodium nitrate is very similar to that in sodium chloride, previously investigated. In the experimental conditions adopted, the formation of three CuiHjPhy(12-2i-j)- species is observed: the mononuclear CuH4Phy6- and CuH5Phy5-, and the dinuclear Cu2H5Phy3-. Analysis of complex formation constants at different ionic strengths reveals that both ISE-H+ and ISE-Cu2+ electrodes gave, within the experimental error, analogous values. Dependence of complex formation constants on ionic strength was modeled by EDH (Extended Debye-Hückel) and SIT (Specific ion Interaction Theory) equations. The sequestering ability of phytate toward copper(II) has been evaluated by the calculation of pL50 (the total ligand concentration, as -log CL, able to bind 50% of metal cation), an empirical parameter already proposed for an objective "quantification" of this ability. A thorough analysis of literature data on phytate-copper(II) complexes has been performed.  相似文献   

11.
The amino acid sequence of component C2, the polypeptide specific for subunit S of prostatic binding protein, the major secretory glycoprotein of the rat ventral prostate, has been determined. Its structure was established using the manual Edman degradation on the most relevant fragments obtained by enzymatic digestion of the S-carboxamidomethylated component C2 and the native subunit S and by chemical cleavage of the remaining undigestible 'cores' with cyanogen bromide. Component C2 contains 92 amino acids corresponding to a molecular weight of 10619. It is a slightly acidic polypeptide in which the acidic and basic residues are unevenly distributed. The N terminus is blocked and three cysteine residues are almost evenly distributed over the peptide chain. A highly polar region is found in position 23-34 and two hydrophobic segments are located in the C-terminal part of the molecule. Component C2 is compared with component C1 of subunit F and their high sequence homology reveals an evolutionary relationship.  相似文献   

12.
Self-cleaving infectious RNAs found in many plant viruses and viroids can also cleave intrans and form hammerhead type secondary structure. It has been observed that the cleavage site must contain the triplet GUC. Also, in other cases, the sequence XUY holds good where X = A, C, G, U and Y = A, C, U but not G. The high electronegative nature of guanosine holds the key to its resistance to cleavage which does not allow hybrid formation between the ribozyme and substrate strands. Guanosine resistance to cleavage might have been the starting thrust for the evolution of a translational initiation codon from XUG. A hypothesis is proposed in this regard and its evolutionary consequences are discussed briefly. Presented at the National Symposium on Evolution of Life.  相似文献   

13.
14.
Large fragments of rabbit serum transferrin have been prepared by enzymatic digestion with subtilisin and by chemical cleavage with BNPS-skatole. Sequence determinations on fragments from the N-terminal lobe lead to the assignment of 273 residues and those from the C-terminal lobe 267 residues. Together with previous determinations, a total of 614 of the ca 679 residues in rabbit transferrin have been assigned. A number of corrections are made to the preliminary sequence assignments of O.U. Beg, H.A. McKenzie and D.C. Shaw (1988) Biochemistry International 17, 1135-1142.  相似文献   

15.
C S Chow  J K Barton 《Biochemistry》1992,31(24):5423-5429
The coordination complex tris(4,7-diphenyl-1,10-phenanthroline)rhodium(III) [Rh(DIP)3(3+)], which promotes RNA cleavage upon photoactivation, has been shown to target specifically guanine-uracil (G-U) mismatches in double-helical regions of folded RNAs. Photoactivated cleavage by Rh(DIP)3(3+) has been examined on a series of RNAs that contain G-U mismatches, yeast tRNA(Phe) and yeast tRNA(Asp), as well as on 5S rRNAs from Xenopus oocytes and Escherichia coli. In addition, a "microhelix" was synthesized, which consists of seven base pairs of the acceptor stem of yeast tRNA(Phe) connected by a six-nucleotide loop and contains a mismatch involving residues G4 and U69. A U4.G69 variant of this sequence was also constructed, and cleavage by Rh(DIP)3(3+) was examined. In each of these cases, specific cleavage is observed at the residue which lies to the 3'-side of the wobble-paired U; some cleavage by the rhodium complex is also evident in several structured RNA loops. The remarkable site selectivity for G-U mismatches within double-helical regions is attributed to shape-selective binding by the rhodium complex. This binding furthermore depends upon the orientation of the G-U mismatch, which produces different stacking interactions between the G-U base pair with the Watson-Crick base pair following it on the 5'-side of U compared to the Watson-Crick pair preceding it on the 3'-side of U. Rh(DIP)3(3+) therefore serves as a unique probe of G-U mismatches and may be useful both as a model and in probing RNA-protein interactions as well as in identifying G-U mismatches within double-helical regions of folded RNAs.  相似文献   

16.
The first cleavage in mammalian pre-rRNA processing occurs within the 5' external transcribed spacer (ETS). We have recently shown that the U3 snRNP is required for this cleavage reaction, binds to the rRNA precursor, and remains complexed with the downstream processing product after the reaction has been completed (1). Using psoralen crosslinking in mouse cell extract we have detected a new interaction between U3 RNA and the mouse ETS processing substrate and its processed product. The crosslinked sites on both U3 and ETS RNAs have been mapped by RNase H cleavage and primer extension analyses. The crosslinked sites in U3 RNA map to C5, U6, and U8. U8 lies within and C5 and U6 are adjacent to an evolutionarily conserved U3 sequence termed box A'. In the ETS the crosslinked sites are U1012 and U1013, 362 nucleotides downstream from the processing site. Although the crosslinked site is dispensable for the primary processing reaction in vitro, a short conserved sequence just 3' to the cleavage site (nucleotides 650-668) is absolutely required for crosslink formation. We conclude that the interaction between U3 RNA and the 5' ETS detected by psoralen crosslinking may play a role in subsequent step(s) of pre-rRNA processing.  相似文献   

17.
During the deglycosylation reaction of fish egg polysialoglycoproteins under the conditions of 1 M NaBH4 in 0.1 M NaOH at 37 degrees C for 48 h, a marked loss of the glycine content has been encountered, besides the serine and threonine residues to which the carbohydrate units are linked. The chemical basis behind this phenomenon has been elucidated by amino acid analysis first of the major glycopeptides (carbohydrate-(O)Thr-Gly-Pro-Ser) derived from desialylated polysialoglycoproteins and subsequently six proline-containing peptides before and after treatment under similar conditions. It has thus been established that -Xaa-Pro- sequences are remarkably susceptible to reductive cleavage under such mild aqueous conditions. In view of the finding that the reductive cleavage of insulin B-chain, which contains a single proline residue adjacent and C-terminal to a threonine residue, led to about 80% loss of the threonine residue, deglycosylation with alkaline borohydride reagents warrants a special comment. The decreased amounts of serine or threonine residues cannot be related simply to the degree of glycosylation of these residues. The above results are therefore discussed in the relation to other work.  相似文献   

18.
The plant virus cowpea mosaic virus (CPMV) has been developed as an epitope-presentation system. Numerous epitopes have been expressed in the betaB-betaC loop of the CPMV small coat protein, all of which undergo a cleavage reaction between their two carboxy-terminal residues. Although many peptides presented in this manner give an authentic immune response, this was not the case for the NIm-1A epitope from human rhinovirus-14. Crystallography revealed significant differences between the structure of NIm-1A on CPMV compared with its native configuration. The 3D structure of C PMV expressing NIm-1A was used to design alterations to the context of the NIm-1A graft.  相似文献   

19.
Processing of the hepatitis C virus polyprotein is accomplished by a series of cotranslational and posttranslational cleavages mediated by host cell signalases and two virally encoded proteinases. Of these the NS3 proteinase is essential for processing at the NS3/4A, NS4A/4B, NS4B/5A, and NS5A/5B junctions. Processing between NS3 and NS4A occurs in cis, implying an intramolecular reaction mechanism, whereas cleavage at the other sites can also be mediated in trans. Sequence analysis of the amino termini of mature cleavage products and comparisons of amino acid residues around the scissile bonds of various hepatitis C virus isolates identified amino acid residues which might contribute to substrate specificity and processing efficiency: an acidic amino acid at the P6 position, a Thr or Cys at the P1 position, and a Ser or Ala at the P1' position. To study the importance of these residues for NS3-mediated cleavage we have undertaken a mutational analysis using an NS3'-5B polyprotein expressed by recombinant vaccinia viruses in mammalian cells. For all NS3-dependent cleavage sites P1 substitutions had the most drastic effects on cleavage efficiency, showing that amino acid residues at this position are the most critical substrate determinants. Since less drastic effects were found for substitutions at the P1' position, these residues appear to be less important for proper cleavage. For all cleavage sites the P6 acidic residue was dispensable, suggesting that it is not essential for substrate recognition and subsequent cleavage. Analysis of a series of mutations at the NS3/4A site revealed great flexibility for substitutions compared with more stringent requirements at the trans cleavage sites. On the basis of these results we propose a model in which processing in cis is determined primarily by polyprotein folding, whereas cleavage in trans is governed not only by the structure of the polyprotein but also by specific interactions between the proteinase and the polyprotein substrate at or around the scissile bond.  相似文献   

20.
The inclusion of phytase in monogastric animal feed has the benefit of hydrolyzing indigestible plant phytate (myo-inositol 1,2,3,4,5,6-hexakis dihydrogen phosphate) to provide poultry and swine with dietary phosphorus. An ideal phytase supplement should have a high temperature tolerance, allowing it to survive the feed pelleting process, a high specific activity at low pHs, and adequate gastric performance. For this study, the performance of a bacterial phytase was optimized by the use of gene site saturation mutagenesis technology. Beginning with the appA gene from Escherichia coli, a library of clones incorporating all 19 possible amino acid changes and 32 possible codon variations in 431 residues of the sequence was generated and screened for mutants exhibiting improved thermal tolerance. Fourteen single site variants were discovered that retained as much as 10 times the residual activity of the wild-type enzyme after a heated incubation regimen. The addition of eight individual mutations into a single construct (Phy9X) resulted in a protein of maximal fitness, i.e., a highly active phytase with no loss of activity after heating at 62°C for 1 h and 27% of its initial activity after 10 min at 85°C, which was a significant improvement over the appA parental phytase. Phy9X also showed a 3.5-fold enhancement in gastric stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号