首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vascular endothelial growth factor (VEGF)-D, a member of the VEGF family, induces both angiogenesis and lymphangiogenesis by activating VEGF receptor-2 (VEGFR-2) and VEGFR-3 on the surface of endothelial cells. Transforming growth factor (TGF)-β1 has been shown to stimulate VEGF-A expression in human lung fibroblast via the Smad3 signaling pathway and to induce VEGF-C in human proximal tubular epithelial cells. However, the effects of TGF-β1 on VEGF-D regulation are unknown. To investigate the regulation of VEGF-D, human lung fibroblasts were studied under pro-fibrotic conditions in vitro and in idiopathic pulmonary fibrosis (IPF) lung tissue. We demonstrate that TGF-β1 downregulates VEGF-D expression in a dose- and time-dependent manner in human lung fibroblasts. This TGF-β1 effect can be abolished by inhibitors of TGF-β type I receptor kinase and Jun NH2-terminal kinase (JNK), but not by Smad3 knockdown. In addition, VEGF-D knockdown in human lung fibroblasts induces G1/S transition and promotes cell proliferation. Importantly, VEGF-D protein expression is decreased in lung homogenates from IPF patients compared with control lung. In IPF lung sections, fibroblastic foci show very weak VEGF-D immunoreactivity, whereas VEGF-D is abundantly expressed within alveolar interstitial cells in control lung. Taken together, our data identify a novel mechanism for downstream signal transduction induced by TGF-β1 in lung fibroblasts, through which they may mediate tissue remodeling in IPF.  相似文献   

2.
The VEGF family comprises seven members that are designated VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, placental growth factor (PlGF), and VEGF-F. Of these factors, VEGF-D plays important roles for angiogenesis and lymphangiogenesis, and could promote tumor growth and lymphatic metastasis. In this study, we identified a zebrafish VEGF-D homolog that encodes a 272 amino acid protein including a PDGF (platelet-derived growth factor) domain characteristic to VEGF family. Expression profile demonstrated that the VEGF-D began expressed from 13 somite stage. Microinjecting zVEGF-D mRNA into zebrafish 1-cell stage embryos resulted in severe misguidance of intersegmental vessels (ISV) and abnormal connection between dorsal aorta and caudal vein. Microangiography indicated that these abnormal ISVs were not functional. Our studies therefore identified the first non-mammalian VEGF-D and established its in vivo role for vascular system development during vertebrate embryogenesis and provided an alternative animal model to further reveal functions of VEGF-D.  相似文献   

3.
VEGF-D promotes the metastatic spread of tumor cells via the lymphatics   总被引:135,自引:0,他引:135  
Metastasis to local lymph nodes via the lymphatic vessels is a common step in the spread of solid tumors. To investigate the molecular mechanisms underlying the spread of cancer by the lymphatics, we examined the ability of vascular endothelial growth factor (VEGF)-D, a ligand for the lymphatic growth factor receptor VEGFR-3/Flt-4, to induce formation of lymphatics in a mouse tumor model. Staining with markers specific for lymphatic endothelium demonstrated that VEGF-D induced the formation of lymphatics within tumors. Moreover, expression of VEGF-D in tumor cells led to spread of the tumor to lymph nodes, whereas expression of VEGF, an angiogenic growth factor which activates VEGFR-2 but not VEGFR-3, did not. VEGF-D also promoted tumor angiogenesis and growth. Lymphatic spread induced by VEGF-D could be blocked with an antibody specific for VEGF-D. This study demonstrates that lymphatics can be established in solid tumors and implicates VEGF family members in determining the route of metastatic spread.  相似文献   

4.
吴碧川  曾虎  张杰军  朱晋峰 《生物磁学》2011,(15):2910-2913
目的:探讨胆管癌患者血管内皮生长因子C和D(vascular endothelial growth factor-Cand.D,VEGF.CandVEGF.D)在胆管癌组织中的表达及其与肿瘤淋巴结转移的关系。方法:应用免疫组化SABC法及Real-timePCR法检测57例胆管癌组织和正常胆管组织中VEGF-C、vEGF-D蛋白及其mRNA的表达。结果:胆管癌组织VEGF—C和VEGF.D表达明显高于正常胆管组织(P〈0.叭),其中淋巴结转移组VEGF-C、VEGF—D的表达与淋巴结未转移组间统计学差异显著(P〈0.05)。VEGF-C和VEGF-D在胆管癌组织中的表达与淋巴结转移有关(P〈0.01)。结论:胆管癌细胞非摄入性高表达的VEGF.C和VEGF.D与淋巴结转移密切相关,可作为评估胆管癌患者预后的重要参考指标。  相似文献   

5.
Vascular endothelial growth factor-D (VEGF-D) binds and activates the endothelial cell tyrosine kinase receptors VEGF receptor-2 (VEGFR-2) and VEGF receptor-3 (VEGFR-3), is mitogenic for endothelial cells, and shares structural homology and receptor specificity with VEGF-C. The primary translation product of VEGF-D has long N- and C-terminal polypeptide extensions in addition to a central VEGF homology domain (VHD). The VHD of VEGF-D is sufficient to bind and activate VEGFR-2 and VEGFR-3. Here we report that VEGF-D is proteolytically processed to release the VHD. Studies in 293EBNA cells demonstrated that VEGF-D undergoes N- and C-terminal cleavage events to produce numerous secreted polypeptides including a fully processed form of M(r) approximately 21,000 consisting only of the VHD, which is predominantly a non-covalent dimer. Biosensor analysis demonstrated that the VHD has approximately 290- and approximately 40-fold greater affinity for VEGFR-2 and VEGFR-3, respectively, compared with unprocessed VEGF-D. In situ hybridization demonstrated that embryonic lung is a major site of expression of the VEGF-D gene. Processed forms of VEGF-D were detected in embryonic lung indicating that VEGF-D is proteolytically processed in vivo.  相似文献   

6.
Lymphangiogenesis, the growth of new lymph vessels, has important roles in both normal and pathological lymphatic function. Despite recent advances, the precise molecular mechanisms behind the lymphangiogenic process remain unclear. The Australian marbled gecko, Christinus marmoratus, voluntarily drops its tail (autotomy) as a predator avoidance strategy. Following autotomy a new tail is regenerated including lymphatic drainage pathways. We examined the molecular control of lymphangiogenesis within the unique model of the regenerating gecko tail. Partial sequences were obtained of the gecko lymphangiogenic growth factors, vascular endothelial growth factor C (VEGF-C) and VEGF-D along with their receptor VEGFR-3. These were highly homologous to other vertebrates. Quantitative real-time polymerase chain reaction (PCR) demonstrated up-regulation of VEGF-C, VEGF-D and VEGFR-3 mRNA expression during the early and middle stages of tail regeneration (between 4 and 9 weeks following autotomy), in late regeneration (12 weeks) and during mid-regeneration (7 and 9 weeks), respectively. VEGF-C and VEGF-D immunostaining was observed lining some lymphatic-like and blood vessels in early–mid tail regeneration, indicating possible associations of the proteins with VEGFRs on endothelia. Keratinocytes and fibroblasts also showed positive staining of VEGF-C and VEGF-D in early–mid tail regeneration. Additionally, VEGF-C was localised in adipose tissue in all tail states examined. This work suggests that specific timings exist for the expression of the lymphangiogenic growth factors, VEGF-C and VEGF-D, and their receptor, VEGF-R3, throughout the regeneration of a functional lymphatic network. Along with localisation data, this suggests potential functions for the growth factors in lymphangiogenesis and angiogenesis throughout tail regeneration.  相似文献   

7.
The recently identified vascular endothelial growth factor C (VEGF-C) belongs to the platelet-derived growth factor (PDGF)/VEGF family of growth factors and is a ligand for the endothelial-specific receptor tyrosine kinases VEGFR-3 and VEGFR-2. The VEGF homology domain spans only about one-third of the cysteine-rich VEGF-C precursor. Here we have analysed the role of post-translational processing in VEGF-C secretion and function, as well as the structure of the mature VEGF-C. The stepwise proteolytic processing of VEGF-C generated several VEGF-C forms with increased activity towards VEGFR-3, but only the fully processed VEGF-C could activate VEGFR-2. Recombinant 'mature' VEGF-C made in yeast bound VEGFR-3 (K[D] = 135 pM) and VEGFR-2 (K[D] = 410 pM) and activated these receptors. Like VEGF, mature VEGF-C increased vascular permeability, as well as the migration and proliferation of endothelial cells. Unlike other members of the PDGF/VEGF family, mature VEGF-C formed mostly non-covalent homodimers. These data implicate proteolytic processing as a regulator of VEGF-C activity, and reveal novel structure-function relationships in the PDGF/VEGF family.  相似文献   

8.
Studies on lymph node metastasis of soft tissue sarcomas are insufficient because of its rarity. In this study, we examined the expressions of vascular endothelial growth factor (VEGF)-C and VEGF-D in soft tissue sarcomas metastasized to lymph nodes. In addition, the effects of the two molecules on the barrier function of a lymphatic endothelial cell monolayer against sarcoma cells were analyzed. We examined 7 patients who had soft tissue sarcomas with lymph node metastases and who had undergone neither chemotherapy nor radiotherapy before lymphadenectomy. Immunohistochemistry revealed that 2 of 7 sarcomas that metastasized to lymph nodes expressed VEGF-C both in primary and metastatic lesions. On the other hand, VEGF-D expression was detected in 4 of 7 primary and 7 of 7 metastatic lesions, respectively. Interestingly, 3 cases that showed no VEGF-D expression at primary sites expressed VEGF-D in metastatic lesions. Recombinant VEGF-C at 10(-8) and VEGF-D at 10(-7)and 10(-8)g/ml significantly increased the random motility of lymphatic endothelial cells compared with controls. VEGF-D significantly increased the migration of sarcoma cells through lymphatic endothelial monolayers. The fact that VEGF-D induced the migration of fibrosarcomas through the lymphatic endothelial monolayer is the probable reason for the strong relationship between VEGF-D expression and lymph node metastasis in soft tissue sarcomas. The important propensities of this molecule for the increase of lymph node metastases are not only lymphangiogenesis but also down-regulation of the barrier function of lymphatic endothelial monolayers, which facilitates sarcoma cells entering the lymphatic circulation.  相似文献   

9.
Mast cells accumulate in large numbers at angiogenic sites, where they have been shown to express a number of proangiogenic factors, including vascular endothelial growth factor (VEGF-A). PGE(2) is known to strongly promote angiogenesis and is found in increased levels at sites of chronic inflammation and around solid tumors. The expression pattern of VEGF and the regulation of VEGF-A by PGE(2) were examined in cord blood-derived human mast cells (CBMC). CBMC expressed mRNA for five isoforms of VEGF-A and other members of the VEGF family (VEGF-B, VEGF-C, and VEGF-D) with strong expression of the most potent secretory isoforms. PGE(2) was a very strong inducer of VEGF-A(121/165) production by CBMC and also elevated VEGF-A mRNA expression. The amount of VEGF-A(121/165) protein production induced by PGE(2) was 4-fold greater than that induced by IgE-mediated activation of CBMC. Moreover, the response to PGE(2) as well as to other cAMP-elevating agents such as forskolin and salbutamol was observed under conditions that were not associated with mast cell degranulation. CBMC expressed substantial levels of the EP(2) receptor, but not the EP(4) receptor, when examined by flow cytometry. In contrast to other reported PGE(2)-mediated effects on mast cells, VEGF-A(121/165) production occurred via activation of the EP(2) receptor. These data suggest a role for human mast cells as a potent source of VEGF(121/165) in the absence of degranulation, and may provide new opportunities to regulate angiogenesis at mast cell-rich sites.  相似文献   

10.
We have identified and characterized a novel vascular endothelial growth factor (VEGF), VEGF-D, which is structurally related to vascular endothelial growth factor C. A full-length cDNA for human VEGF-D was cloned following the identification of an EST obtained through a TFASTA search of public EST databases. The murine VEGF-D was subsequently isolated from a mouse lung cDNA library. The human VEGF-D gene was mapped to human chromosome Xp22.31. Both human and mouse VEGF-D are strongly expressed in lung and encode the eight cysteine residues that are highly conserved among the members of this family. The high level of conservation between mouse and human VEGF-D may emphasize the biological importance of this gene. Recently the murine gene, FIGF, which is identical to mouse VEGF-D, was reported.  相似文献   

11.
目的:探讨胆管癌患者血管内皮生长因子C和D(vascular endothelial growth factor-C and-D,VEGF-C and VEGF-D)在胆管癌组织中的表达及其与肿瘤淋巴结转移的关系。方法:应用免疫组化SABC法及Real-time PCR法检测57例胆管癌组织和正常胆管组织中VEGF-C、VEGF-D蛋白及其mRNA的表达。结果:胆管癌组织VEGF-C和VEGF-D表达明显高于正常胆管组织(P<0.01),其中淋巴结转移组VEGF-C、VEGF-D的表达与淋巴结未转移组间统计学差异显著(P<0.05)。VEGF-C和VEGF-D在胆管癌组织中的表达与淋巴结转移有关(P<0.01)。结论:胆管癌细胞非摄入性高表达的VEGF-C和VEGF-D与淋巴结转移密切相关,可作为评估胆管癌患者预后的重要参考指标。  相似文献   

12.
Vascular endothelial growth factor D (VEGF-D) is a member of the VEGF/PDGF superfamily that has been implicated in angiogenesis and lymphangiogenesis. We have isolated a chick cDNA that shows homology with VEGF-D (also known as FIGF, c-fos-induced growth factor) of other species. Here, we describe the expression pattern of cVegf-D in chick embryos. In the limb buds, cVegf-D shows a dynamic expression pattern that is restricted to the mesenchyme of the posterior region. cVegf-D expression is also detected in the ectoderm and mesenchyme of the head region, somites, notochord and pharyngeal arches. We also report on the capability of Sonic hedgehog and retinoic acid to regulate cVegf-D expression.  相似文献   

13.
Biology of vascular endothelial growth factors   总被引:12,自引:0,他引:12  
Roy H  Bhardwaj S  Ylä-Herttuala S 《FEBS letters》2006,580(12):2879-2887
Angiogenesis is the process by which new blood vessels are formed from existing vessels. The vascular endothelial growth factors (VEGFs) are considered as key molecules in the process of angiogenesis. The VEGF family currently includes VEGF-A, -B, -C, -D, -E, -F and placenta growth factor (PlGF), that bind in a distinct pattern to three structurally related receptor tyrosine kinases, denoted VEGF receptor-1, -2, and -3. VEGF-C and VEGF-D also play a crucial role in the process of lymphangiogenesis. Here, we review the biology of VEGFs and evaluate their role in pathological angiogenesis and lymphangiogenesis.  相似文献   

14.
VEGF in biological control   总被引:4,自引:0,他引:4  
Vascular endothelial growth factor A (VEGF-A) belongs to a family of heparin binding growth factors that include VEGF-B, VEGF-C, VEGF-D, and placental-like growth factor (PLGF). First discovered for its ability to regulate vascular endothelial cell permeability, VEGF is a well-known angiogenic factor that is important for vascular development and maintenance in all mammalian organs. The development of molecular tools and pharmacological agents to selectively inhibit VEGF function and block angiogenesis and/or vascular permeability has led to great promise in the treatment of various cancers, macular degeneration, and wound healing. However, VEGF is also important in animals for the regulation of angiogenesis, stem cell and monocyte/macrophage recruitment, maintenance of kidney and lung barrier functions and neuroprotection. In addition to its role in regulating endothelial cell proliferation, migration, and cell survival, VEGF receptors are also located on many non-endothelial cells and act through autrocrine pathways to regulate cell survival and function. The following review will discuss the role of VEGF in physiological angiogenesis as well as its role in non-angiogenic processes that take place in adult organs.  相似文献   

15.
Angiogenesis, the sprouting of new blood vessels from pre-existing ones, and the permeability of blood vessels are regulated by vascular endothelial growth factor (VEGF) via its two known receptors Flt1 (VEGFR-1) and KDR/Flk-1 (VEGFR-2). The Flt4 receptor tyrosine kinase is related to the VEGF receptors, but does not bind VEGF and its expression becomes restricted mainly to lymphatic endothelia during development. In this study, we have purified the Flt4 ligand, VEGF-C, and cloned its cDNA from human prostatic carcinoma cells. While VEGF-C is homologous to other members of the VEGF/platelet derived growth factor (PDGF) family, its C-terminal half contains extra cysteine-rich motifs characteristic of a protein component of silk produced by the larval salivary glands of the midge, Chironomus tentans. VEGF-C is proteolytically processed, binds Flt4, which we rename as VEGFR-3 and induces tyrosine autophosphorylation of VEGFR-3 and VEGFR-2. In addition, VEGF-C stimulated the migration of bovine capillary endothelial cells in collagen gel. VEGF-C is thus a novel regulator of endothelia, and its effects may extend beyond the lymphatic system, where Flt4 is expressed.  相似文献   

16.
Vascular endothelial growth factor (VEGF)-D is a member of the VEGF family of angiogenic growth factors that recognizes and activates the vascular endothelial growth factor receptor (VEGFR)-2 and VEGFR-3 on blood and/or lymphatic vessels. We show that in the long bones of newborn mice, VEGF-D and VEGFR-3 are expressed in the osteoblasts of the growing plate. The treatment of primary human osteoblasts with recombinant VEGF-D induces the expression of osteocalcin and the formation of mineralized nodules in a dose-dependent manner. A monoclonal neutralizing antibody, anti-VEGF-D, or silencing of VEGFR-3 by lentiviral-mediated expression of VEGFR-3 small hairpin RNA affects VEGF-D-dependent osteocalcin expression and nodule formation. Moreover, in primary human osteoblasts, VEGF-D expression is under the control of VEGF, and inhibition of VEGF-D/VEGFR-3 signaling, by monoclonal antibodies or VEGFR-3 silencing, affects VEGF-dependent osteoblast differentiation. These experiments establish that VEGF-D/VEGFR-3 signaling plays a critical role in osteoblast maturation and suggest that VEGF-D is a downstream effector of VEGF in osteogenesis.  相似文献   

17.
Vascular endothelial growth factor receptor-3 (VEGFR-3/Flt4) binds two known members of the VEGF ligand family, VEGF-C and VEGF-D, and has a critical function in the remodelling of the primary capillary vasculature of midgestation embryos. Later during development, VEGFR-3 regulates the growth and maintenance of the lymphatic vessels. In the present study, we have isolated and cultured stable lineages of blood vascular and lymphatic endothelial cells from human primary microvascular endothelium by using antibodies against the extracellular domain of VEGFR-3. We show that VEGFR-3 stimulation alone protects the lymphatic endothelial cells from serum deprivation-induced apoptosis and induces their growth and migration. At least some of these signals are transduced via a protein kinase C-dependent activation of the p42/p44 MAPK signalling cascade and via a wortmannin-sensitive induction of Akt phosphorylation. These results define the critical role of VEGF-C/VEGFR-3 signalling in the growth and survival of lymphatic endothelial cells. The culture of isolated lymphatic endothelial cells should now allow further studies of the molecular properties of these cells.  相似文献   

18.
Recently, vascular endothelial growth factor receptor 3 (VEGFR-3) has been shown to provide a specific marker for lymphatic endothelia in certain human tissues. In this study, we have investigated the expression of VEGFR-3 and its ligands VEGF-C and VEGF-D in fetal and adult tissues. VEGFR-3 was consistently detected in the endothelium of lymphatic vessels such as the thoracic duct, but fenestrated capillaries of several organs including the bone marrow, splenic and hepatic sinusoids, kidney glomeruli and endocrine glands also expressed this receptor. VEGF-C and VEGF-D, which bind both VEGFR-2 and VEGFR-3 were expressed in vascular smooth muscle cells. In addition, intense cytoplasmic staining for VEGF-C was observed in neuroendocrine cells such as the alpha cells of the islets of Langerhans, prolactin secreting cells of the anterior pituitary, adrenal medullary cells, and dispersed neuroendocrine cells of the gastrointestinal tract. VEGF-D was observed in the innermost zone of the adrenal cortex and in certain dispersed neuroendocrine cells. These results suggest that VEGF-C and VEGF-D have a paracrine function and perhaps a role in peptide release from secretory granules of certain neuroendocrine cells to surrounding capillaries.  相似文献   

19.
20.
Vascular endothelial growth factor (VEGF)-D deficiency had no significant effect on total body weight or on subcutaneous (SC) or gonadal (GON) adipose tissue mass of mice kept on a standard fat (SFD) or a high fat diet (HFD) for 15 weeks. The composition of SC and GON adipose tissues of VEGF-D deficient mice in terms of size and density of adipocytes or blood vessels was also comparable to that of wild-type control mice. Staining of lymphatic vessels in adipose tissue sections did not reveal marked differences between both genotypes. The absence of an effect of VEGF-D deficiency could not be explained by compensatory increases of VEGF-C expression in adipose tissues of the deficient mice. Thus, our data do not support an important role of VEGF-D in (lymph) angiogenesis or in adipose tissue development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号