共查询到20条相似文献,搜索用时 15 毫秒
1.
A putative protein tyrosine phosphatase (PTPase) gene, PTP2, was cloned from Saccharomyces cerevisiae. The complete yeast PTP2 gene encodes a 750-amino acid residue protein with a predicted mass of 86 kDa. The conserved PTPase domain was localized in the C-terminal half of the protein. Amino acid sequence alignment of the yeast PTPase domain with other phosphatases indicated approximately 20-25% sequence identity with the mammalian PTPase and a similar degree of identity with the PTPase encoded by the yeast PTP1 gene. The PTP2 gene is closely linked to the yeast RET1 and STE4 genes and is localized on the right arm of chromosome 15. Gene disruption experiments demonstrated that neither PTP2 alone nor PTP2 in combination with PTP1 was essential for growth under the conditions tested. The ability of PTP2 to complement the cdc25-22 mutant of Schizosaccharomyces pombe was also examined, and unlike the human T-cell PTPase, which was able to complement the cdc25-22 mutant, the S. cerevisiae PTP2 was unable to complement the cdc25-22 mutant of S. pombe. 相似文献
2.
3.
SIC1 encodes a nonessential B-type cyclin/CDK inhibitor that functions at the G1/S transition and the exit from mitosis. To understand more completely the regulation of these transitions, mutations causing synthetic lethality with sic1 Delta were isolated. In this screen, we identified a novel gene, SID2, which encodes an essential protein that appears to be required for DNA replication or repair. sid2-1 sic1 Delta strains and sid2-21 temperature-sensitive strains arrest preanaphase as large-budded cells with a single nucleus, a short spindle, and an approximately 2C DNA content. RAD9, which is necessary for the DNA damage checkpoint, is required for the preanaphase arrest of sid2-1 sic1 Delta cells. Analysis of chromosomes in mutant sid2-21 cells by field inversion gel electrophoresis suggests the presence of replication forks and bubbles at the arrest. Deleting the two S phase cyclins, CLB5 and CLB6, substantially suppresses the sid2-1 sic1 Delta inviability, while stabilizing Clb5 protein exacerbates the defects of sid2-1 sic1 Delta cells. In synchronized sid2-1 mutant strains, the onset of replication appears normal, but completion of DNA synthesis is delayed. sid2-1 mutants are sensitive to hydroxyurea indicating that sid2-1 cells may suffer DNA damage that, when combined with additional insult, leads to a decrease in viability. Consistent with this hypothesis, sid2-1 rad9 cells are dead or very slow growing even when SIC1 is expressed. 相似文献
4.
5.
6.
The PPM family of Ser/Thr protein phosphatases have recently been shown to down-regulate the stress response pathways in eukaryotes. Within the stress pathway, key signaling kinases, which are activated by protein phosphorylation, have been proposed as the in vivo substrates of PP2C, the prototypical member of the PPM family. Although it is known that these phosphatases require metal cations for activity, the molecular details of these important reactions have not been established. Therefore, here we report a detailed biochemical study to elucidate the kinetic and chemical mechanism of PP2Calpha. Steady-state kinetic and product inhibition studies revealed that PP2Calpha employs an ordered sequential mechanism, where the metal cations bind before phosphorylated substrate, and phosphate is the last product to be released. The metal-dependent activity of PP2C (as reflected in kcat and kcat/Km), indicated that Fe2+ was 1000-fold better than Mg2+. The pH rate profiles revealed two ionizations critical for catalytic activity. An enzyme ionization with a pKa value of 7 must be unprotonated for catalysis, and an enzyme ionization with a pKa of 9 must be protonated for substrate binding. Br?nsted analysis of substrate leaving group pKa indicated that phosphomonoester hydrolysis is rate-limiting at pH 7. 0, but not at pH 8.5 where a common step independent of the nature of the substrate and alcohol product limits turnover (kcat). Rapid reaction kinetics between phosphomonoester and PP2C yielded exponential "bursts" of product formation, consistent with phosphate release being the slow catalytic step at pH 8.5. Dephosphorylation of synthetic phosphopeptides corresponding to several protein kinases revealed that PP2C displays a strong preference for diphosphorylated peptides in which the phosphorylated residues are in close proximity. 相似文献
7.
Essential functions of protein tyrosine phosphatases PTP2 and PTP3 and RIM11 tyrosine phosphorylation in Saccharomyces cerevisiae meiosis and sporulation 下载免费PDF全文
Zhan XL Hong Y Zhu T Mitchell AP Deschenes RJ Guan KL 《Molecular biology of the cell》2000,11(2):663-676
Tyrosine phosphorylation plays a central role in eukaryotic signal transduction. In yeast, MAP kinase pathways are regulated by tyrosine phosphorylation, and it has been speculated that other biochemical processes may also be regulated by tyrosine phosphorylation. Previous genetic and biochemical studies demonstrate that protein tyrosine phosphatases (PTPases) negatively regulate yeast MAP kinases. Here we report that deletion of PTP2 and PTP3 results in a sporulation defect, suggesting that tyrosine phosphorylation is involved in regulation of meiosis and sporulation. Deletion of PTP2 and PTP3 blocks cells at an early stage of sporulation before premeiotic DNA synthesis and induction of meiotic-specific genes. We observed that tyrosine phosphorylation of several proteins, including 52-, 43-, and 42-kDa proteins, was changed in ptp2Deltaptp3Delta homozygous deletion cells under sporulation conditions. The 42-kDa tyrosine-phosphorylated protein was identified as Mck1, which is a member of the GSK3 family of protein kinases and previously known to be phosphorylated on tyrosine. Mutation of MCK1 decreases sporulation efficiency, whereas mutation of RIM11, another GSK3 member, specifically abolishes sporulation; therefore, we investigated regulation of Rim11 by Tyr phosphorylation during sporulation. We demonstrated that Rim11 is phosphorylated on Tyr-199, and the Tyr phosphorylation is essential for its in vivo function, although Rim11 appears not to be directly regulated by Ptp2 and Ptp3. Biochemical characterizations indicate that tyrosine phosphorylation of Rim11 is essential for the activity of Rim11 to phosphorylate substrates. Our data demonstrate important roles of protein tyrosine phosphorylation in meiosis and sporulation 相似文献
8.
Spk1, a new kinase from Saccharomyces cerevisiae, phosphorylates proteins on serine, threonine, and tyrosine. 总被引:19,自引:6,他引:19 下载免费PDF全文
A Saccharomyces cerevisiae lambda gt11 library was screened with antiphosphotyrosine antibodies in an attempt to identify a gene encoding a tyrosine kinase. A subclone derived from one positive phage was sequenced and found to contain an 821-amino-acid open reading frame that encodes a protein with homology to protein kinases. We tested the activity of the putative kinase by constructing a vector encoding a glutathione-S-transferase fusion protein containing most of the predicted polypeptide. The fusion protein phosphorylated endogenous substrates and enolase primarily on serine and threonine. The gene was designated SPK1 for serine-protein kinase. Expression of the Spk1 fusion protein in bacteria stimulated serine, threonine, and tyrosine phosphorylation of bacterial proteins. These results, combined with the antiphosphotyrosine immunoreactivity induced by the kinase, indicate that Spk1 is capable of phosphorylating tyrosine as well as phosphorylating serine and threonine. In in vitro assays, the fusion protein kinase phosphorylated the synthetic substrate poly(Glu/Tyr) on tyrosine, but the activity was weak compared with serine and threonine phosphorylation of other substrates. To determine if other serine/threonine kinases would phosphorylate poly(Glu/Tyr), we tested calcium/calmodulin-dependent protein kinase II and the catalytic subunit of cyclic AMP-dependent protein kinase. The two kinases had similar tyrosine-phosphorylating activities. These results establish that the functional difference between serine/threonine- and tyrosine-protein kinases is not absolute and suggest that there may be physiological circumstances in which tyrosine phosphorylation is mediated by serine/threonine kinases. 相似文献
9.
Biochemical characterization of a family of serine/threonine protein kinases regulated by tyrosine and serine/threonine phosphorylations. 总被引:18,自引:0,他引:18
A J Rossomando J S Sanghera L A Marsden M J Weber S L Pelech T W Sturgill 《The Journal of biological chemistry》1991,266(30):20270-20275
Mitogen-activated protein kinase (p42mapk) becomes transiently activated after treatment of serum-starved murine Swiss 3T3 cells or EL4 thymocytes with a diversity of mitogens. Similarly, a meiosis-activated protein kinase (p44mpk) becomes stimulated during maturation of sea star oocytes induced by 1-methyladenine. Both p42mapk and p44mpk have been identified as protein-serine/threonine kinases that are activated as a consequence of their phosphorylation. Because homologous protein kinases may play essential roles in both mitogenesis and oogenesis, we have compared in detail the biochemical properties of these two kinases. We find that these kinases are highly related based on their in vitro substrate specificities, sensitivity to inhibitors, and immunological cross-reactivity. However, they differ in apparent molecular weight and can be separated chromatographically, indicating that the two enzymes are distinct. Furthermore, in the course of this investigation, we have identified a 44-kDa protein kinase in mitogen-stimulated Swiss mouse 3T3 cells and EL4 thymocytes that co-purifies with p44mpk and thus appears to be a closer homolog of the sea star enzyme. Analysis of these protein kinases clarifies the relationships between a set of tyrosine-phosphorylated 41-45-kDa proteins present in mitogen-stimulated cells (Martinez, R., Nakamura., K. D., and Weber, M. J. (1982) Mol. Cell. Biol. 2, 653-655; Cooper, J. A., and Hunter, T. (1984) Mol. Cell. Biol. 4, 30-37), two myelin basic protein kinases identified in epidermal growth factor-treated Swiss mouse 3T3 cells (Ahn, N. G., Weiel, J. E., Chan, C. P., and Krebs, E. G. (1990) J. Biol. Chem. 265, 11487-11494), and p42mapk. Our work points to the existence of a group of related serine/threonine protein kinases, regulated by tyrosine phosphorylation and functioning at different stages of the cell cycle. 相似文献
10.
He XP Deng Q Gao LX Li C Zhang W Zhou YB Tang Y Shi XX Xie J Li J Chen GR Chen K 《Bioorganic & medicinal chemistry》2011,19(13):3892-3900
Protein tyrosine phosphatases (PTPs) are well-validated therapeutic targets for many human major diseases. The development of their potent inhibitors has therefore become a main focus of both academia and the pharmaceutical industry. We report herein a facile strategy toward the fabrication of new and competent PTP inhibitor entities by simply 'clicking' alkynyl amino acids onto diverse azido sugar templates. Triazolyl glucosyl, galactosyl, and mannosyl serine and threonine derivatives were efficiently synthesized via click reaction, which were then identified as potent CDC25B and PTP1B inhibitors selective over a panel of homologous PTPs tested. Their inhibitory activity and selectivity were found to largely lie on the structurally and configurationally diversified monosaccharide moieties whereon serinyl and threoninyl residues were introduced. In addition, MTT assay revealed the triazole-connected sugar-amino acid hybrids may also inhibit the growth of several human cancer cell lines including A549, Hela, and especially HCT-116. On the basis of such compelling evidence, we consider that this compound series could furnish promising chemical entities serving as new CDC25B and PTP1B inhibitors with potential cellular activity. Furthermore, the 'click' strategy starting from easily accessible and biocompatible amino acids and sugar templates would allow the modular fabrication of a rich library of new PTP inhibitors efficaciously and productively. 相似文献
11.
12.
AUT3, a serine/threonine kinase gene, is essential for autophagocytosis in Saccharomyces cerevisiae. 总被引:3,自引:0,他引:3 下载免费PDF全文
Autophagocytosis is a starvation-induced process, carrying proteins destined for degradation to the lysosome. In the yeast Saccharomyces cerevisiae, the autophagic process is visualized by the appearance of autophagic vesicles in the vacuoles of proteinase yscB-deficient strains during starvation. aut3-1 mutant cells which exhibit a block in the autophagic process have been isolated previously. By using the drastically reduced sporulation frequency of homozygous aut3-1 diploid cells, the AUT3 gene was cloned by complementation. The Aut3 protein consists of 897 amino acids. The amino-terminal part of the protein shows significant homologies to serine/threonine kinases. aut3 null mutant cells are fully viable on rich media but show a reduced survival rate upon starvation. They are unable to accumulate autophagic vesicles in the vacuole during starvation. Starvation-induced vacuolar protein breakdown is almost completely impaired in aut3-deficient cells. Vacuolar morphology and acidification are not influenced in aut3-deficient cells. Also, secretion of invertase, endocytic uptake of Lucifer Yellow, and vacuolar protein sorting appear wild type like in aut3-deficient cells, suggesting autophagocytosis as a novel route for the transport of proteins from the cytosol to the vacuole. By using a fusion of Aut3p with green-fluorescent protein, Aut3p was localized to the cytosol. 相似文献
13.
Binding modes of a series of aryloxymethylphosphonates and monoanionic biosteres of phosphate group from a series of benzylic alpha,alpha-diflluoro phosphate and its biosteres as protein tyrosine phosphatase 1B (PTP 1B) inhibitors have been identified by molecular modeling techniques. We have performed docking and molecular dynamics simulations of these inhibitors with PTP 1B enzyme. The initial conformation of the inhibitors for docking was obtained from simulated annealing technique. Solvent accessible surface area calculations suggested that active site of PTP 1B is highly hydrophobic. The results indicate that for aryloxymethylphosphonates, in addition to hydrogen bonding interactions, Tyr46, Arg47, Asp48, Val49, Glu115, Lys116, Lys120 amino acid residues of PTP 1B are responsible for governing inhibitor potency of the compounds. The sulfonate and tetrazole functional groups have been identified as effective monoanionic biosteres of phosphate group and biphenyl ring system due to its favorable interactions with Glu115, Lys116, Lys120 residues of PTP 1B found to be more suitable aromatic functionality than naphthalene ring system for benzylic alpha,alpha-diflluoro phosphate and its biosteres. The information generated from the present study should be useful in the design of more potent PTP 1B inhibitors as anti diabetic agents. 相似文献
14.
The catalytic subunit of type 1 serine/threonine protein phosphatase (PP1c) was shown to bind trithorax (TRX) in the yeast two-hybrid system. Interaction between PP1c and TRX was confirmed in vivo by co-immunoprecipitation from Drosophila extracts. An amino-terminal fragment of TRX, containing a putative PP1c-binding motif, was shown to be sufficient for binding to PP1c by in vitro glutathione S-transferase pull-down assays using recombinant protein and fly extracts expressing epitope tagged PP1c. Disruption of the PP1c-binding motif abolished binding, indicating that this motif is necessary for interaction with PP1. On polytene chromosomes, PP1c is found at many discrete bands, which are widely distributed along the chromosomes. Many of the sites that stain strongly for PP1c correspond to sites of TRX, consistent with a physical association of PP1c with chromatin-bound TRX. Homeotic transformations of haltere to wing in flies mutant for trx are dominantly suppressed by PP1c mutants, indicating that PP1c not only binds TRX, but is a physiologically relevant regulator of TRX function in vivo. 相似文献
15.
Zhao H Liu G Xin Z Serby MD Pei Z Szczepankiewicz BG Hajduk PJ Abad-Zapatero C Hutchins CW Lubben TH Ballaron SJ Haasch DL Kaszubska W Rondinone CM Trevillyan JM Jirousek MR 《Bioorganic & medicinal chemistry letters》2004,14(22):5543-5546
Guided by X-ray crystallography, we have extended the structure-activity relationship (SAR) study on an isoxazole carboxylic acid-based PTP1B inhibitor (1) and more potent and equally selective (>20-fold selectivity over the highly homologous T-cell PTPase, TCPTP) PTP1B inhibitors were identified. Inhibitor 7 demonstrated good cellular activity against PTP1B in COS 7 cells. 相似文献
16.
PPX, a novel protein serine/threonine phosphatase localized to centrosomes. 总被引:23,自引:2,他引:21 下载免费PDF全文
The amino acid sequence of a novel mammalian protein phosphatase, termed PPX (and designated PPP4 in the human genome nomenclature), has been deduced from the cDNA and shown to be 65% identical to PP2A alpha and PP2A beta and 45% identical to PPI isoforms, the predicted molecular mass being 35 kDa. PPX was expressed in the baculovirus system. Its substrate specificity and sensitivity to the inhibitors, okadaic acid and microcystin, were similar (but not identical) to the catalytic subunit of PP2A. However, PPX did not bind the 65 kDa regulatory subunit of PP2A. The intracellular localization of PPX was investigated by immunofluorescence using two different antibodies raised against bacterially expressed PPX and a PPX-specific peptide. These showed that although PPX was distributed throughout the cytoplasm and the nucleus, intense staining occurred at centrosomes. The centrosomal staining was apparent in interphase and at all stages of mitosis, except telophase. In contrast, antibodies directed against bacterially expressed PP2A were not specifically localized to centrosomes. The human autoantibody #5051, which stains the pericentriolar material, colocalizes with PPX antibodies, suggesting that PPX may play a role in microtubule nucleation. 相似文献
17.
Phosphorylation and activation of protein tyrosine phosphatase (PTP) 1B by insulin receptor 总被引:16,自引:0,他引:16
We have previously reported a direct in vivo interaction between the activated insulin receptor and protein-tyrosine phosphatase-1B (PTP1B), which leads to an increase in PTP1B tyrosine phosphorylation. In order to determine if PTP1B is a substrate for the insulin receptor tyrosine kinase, the phosphorylation of the Cys 215 Ser, catalytically inactive mutant PTP1B (CS-PTP1B) was measured in the presence of partially purified and activated insulin receptor. In vitro, the insulin receptor tyrosine kinase catalyzed the tyrosine phosphorylation of PTP1B. 53% of the total cellular PTP1B became tyrosine phosphorylated in response to insulin in vivo. Tyrosine phosphorylation of PTP1B by the insulin receptor was absolutely dependent upon insulin-stimulated receptor autophosphorylation and required an intact kinase domain, containing insulin receptor tyrosines 1146, 1150 and 1151. Tyrosine phosphorylation of wild type PTP1B by the insulin receptor kinase increased phosphatase activity of the protein. Intermolecular transdephosphorylation was demonstrated both in vitro and in vivo, by dephosphorylation of phosphorylated CS-PTP1B by the active wild type enzyme either in a cell-free system or via expression of the wild type PTP1B into Hirc-M cell line, which constitutively overexpress the human insulin receptor and CS-PTP1B. These results suggest that PTP1B is a target protein for the insulin receptor tyrosine kinase and PTP1B can regulate its own phosphatase activity by maintaining the balance between its phosphorylated (the active form) and dephosphorylated (the inactive form) state. 相似文献
18.
Protein tyrosine phosphatase 1B (PTP1B) is a key regulator of the insulin-receptor and leptin-receptor signaling pathways, and it has therefore emerged as a critical antitype-II-diabetes and antiobesity drug target. Toward the goal of generating a covalent modulator of PTP1B activity that can be used for investigating its roles in cell signaling and disease progression, we report that the biarsenical probe FlAsH-EDT(2) can be used to inhibit PTP1B variants that contain cysteine point mutations in a key catalytic loop of the enzyme. The site-specific cysteine mutations have little effect on the catalytic activity of the enzyme in the absence of FlAsH-EDT(2). Upon addition of FlAsH-EDT(2), however, the activity of the engineered PTP1B is strongly inhibited, as assayed with either small-molecule or phosphorylated-peptide PTP substrates. We show that the cysteine-rich PTP1B variants can be targeted with the biarsenical probe in either whole-cell lysates or intact cells. Together, our data provide an example of a biarsenical probe controlling the activity of a protein that does not contain the canonical tetra-cysteine biarsenical-labeling sequence CCXXCC. The targeting of "incomplete" cysteine-rich motifs could provide a general means for controlling protein activity by targeting biarsenical compounds to catalytically important loops in conserved protein domains. 相似文献
19.
The methylotrophic yeast Pichia pastoris was used to express Drosophila melanogaster type 1beta serine/threonine phosphoprotein phosphatase catalytic subunit (PP1beta9C). A construct encoding PP1beta9C with a short NH(2)-terminal fusion including six histidine residues was introduced into the X-33 and KM71H strains of P. pastoris by homologous recombination. Recombinant protein was purified from cell free extracts 24 h after methanol induction. PP1beta9C was purified to a specific activity of 12,077 mU/mg by a three-step purification method comprising (NH(4))(2)SO(4)-ethanol precipitation followed by Ni(2+)-agarose affinity chromatography and Mono Q anion-exchange chromatography. This purification scheme yielded approximately 80 microg of active, soluble PP1beta9C per 1 L of culture. In contrast to recombinant PP1beta9C overexpressed in bacteria, which differs from native PP1c in several biochemical criteria including the requirement for divalent cations, sensitivity to vanadate, and p-nitrophenyl phosphate (pNPP) phosphatase activity, recombinant PP1beta9C produced in P. pastoris has native-like properties. P. pastoris thus provides a reliable and convenient system for the production of active, native-like recombinant PP1beta9C. 相似文献