首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD28 signals contribute to either type 1 or type 2 T cell differentiation. Here, we show that administration of B7.2-Ig fusion proteins to tumor-bearing mice induces tumor regression by promoting the differentiation of antitumor type 2 CD8(+) effector T cells along with IL-4 production. B7.2-Ig-mediated regression was not induced in IL-4(-/-) and STAT6(-/-) mice. However, it was elicited in IFN-gamma(-/-) and STAT4(-/-) mice. By contrast, IL-12-induced tumor regression occurred in IL-4(-/-) and STAT6(-/-) mice, but not in IFN-gamma(-/-) and STAT4(-/-) mice. Moreover, B7.2-Ig treatment was effective in a tumor model not responsive to IL-12. B7.2-Ig administration elicited elevated levels of IL-4 production. Tumor regression was predominantly mediated by CD8(+) T cells, although the induction of these effector cells required CD4(+) T cells. Tumor regression induced by CD8(+) T cells alone was inhibited by neutralizing the IL-4 produced during B7.2-Ig treatment. Thus, these results indicate that stimulation in vivo of CD28 with B7.2-Ig in tumor-bearing mice results in enhanced induction of antitumor type 2 CD8(+) T cells (Tc2) leading to Tc2-mediated tumor regression.  相似文献   

2.
Polarized Th1 cells show a stable phenotype: they become insensitive to IL-4 stimulation and lose the potential to produce IL-4. Previously, we reported that IFN-gamma played a critical role in stabilizing Th1 phenotype. However, the mechanism by which IFN-gamma stabilizes Th1 phenotype is not clear. In this study, we compared STAT6 phosphorylation in wild-type (WT) and IFN-gamma receptor knockout (IFNGR(-/-)) Th1 cells. We found a striking diminution of STAT6 phosphorylation in differentiated WT Th1 cells, but not in differentiated IFNGR(-/-) Th1 cells. The impairment of STAT6 phosphorylation in differentiated WT Th1 cells was not due to a lack of IL-4R expression or phosphorylation. Jak1 and Jak3 expression and phosphorylation were comparable in both cell types. No differential expression of suppressor of cytokine signaling 1 (SOCS1), SOCS3, or SOCS5 was observed in the two cell types. In addition, Src homology 2-containing phosphatase mutation did not affect IL-4-induced STAT6 phosphorylation in differentiated Th1 cells derived from viable motheaten (me(v)/me(v)) mice. These results led us to focus on a novel mechanism. By using a pulldown assay, we observed that STAT6 in WT Th1 cells bound less effectively to the phosphorylated IL-4R/GST fusion protein than that in IFNGR(-/-) Th1 cells. Our results suggest that IFN-gamma may suppress phosphorylation of STAT6 by inhibiting its recruitment to the IL-4R.  相似文献   

3.
IL-27, a member of the IL-6/IL-12 family, activates both STAT1 and STAT3 through its receptor, which consists of WSX-1 and gp130 subunits, resulting in augmentation of Th1 differentiation and suppression of proinflammatory cytokine production. In the present study, we investigated the role of STAT3 in the IL-27-mediated immune functions. IL-27 induced phosphorylation of STAT1, -2, -3 and -5 in wild-type naive CD4+ T cells, but failed to induce that of STAT3 and STAT5 in STAT3-deficient cohorts. IL-27 induced not only proinflammatory responses including up-regulation of ICAM-1, T-box expressed in T cells, and IL-12Rbeta2 and Th1 differentiation, but also anti-inflammatory responses including suppression of proinflammatory cytokine production such as IL-2, IL-4, and IL-13 even in STAT3-deficient naive CD4+ T cells. In contrast, IL-27 augmented c-Myc and Pim-1 expression and induced cell proliferation in wild-type naive CD4+ T cells but not in STAT3-deficient cohorts. Moreover, IL-27 failed to activate STAT3, augment c-Myc and Pim-1 expression, and induce cell proliferation in pro-B BaF/3 transfectants expressing mutant gp130, in which the putative STAT3-binding four Tyr residues in the YXXQ motif of the cytoplasmic region was replaced by Phe. These results suggest that STAT3 is activated through gp130 by IL-27 and is indispensable to IL-27-mediated cell proliferation but not to IL-27-induced Th1 differentiation and suppression of proinflammatory cytokine production. Thus, IL-27 may be a cytokine, which activates both STAT1 and STAT3 through distinct receptor subunits, WSX-1 and gp130, respectively, to mediate its individual immune functions.  相似文献   

4.
IL-27 is a novel IL-12 family member that plays a role in the early regulation of Th1 initiation, induces proliferation of naive CD4+ T cells, and synergizes with IL-12 in IFN-gamma production. It has been recently reported that IL-27 induces T-bet and IL-12Rbeta2 expression through JAK1/STAT1 activation. In the present study, we further investigated the JAK/STAT signaling molecules activated by IL-27 and also the role of STAT1 in IL-27-mediated responses using STAT1-deficient mice. In addition to JAK1 and STAT1, IL-27-activated JAK2, tyrosine kinase-2, and STAT2, -3, and -5 in naive CD4+ T cells. The activation of STAT2 and STAT5, but not of STAT3, was greatly diminished in STAT1-deficient naive CD4+ T cells. Comparable proliferative response to IL-27 was observed between STAT1-deficient and wild-type naive CD4+ T cells. In contrast, IL-27 hardly induced T-bet and subsequent IL-12Rbeta2 expression, and synergistic IFN-gamma production by IL-27 and IL-12 was impaired in STAT1-deficient naive CD4+ T cells. Moreover, IL-27 augmented the expression of MHC class I on naive CD4+ T cells in a STAT1-dependent manner. These results suggest that IL-27 activates JAK1 and -2, tyrosine kinase-2, STAT1, -2, -3, and -5 in naive CD4+ T cells and that STAT1 plays an indispensable role in IL-27-induced T-bet and subsequent IL-12Rbeta2 expression and MHC class I expression as well but not proliferation, while STAT3 presumably plays an important role in IL-27-induced proliferation.  相似文献   

5.
Adenosine is a purine nucleoside with immunosuppressive activity that acts through cell surface receptors (A(1), A(2a), A(2b), A(3)) on responsive cells such as T lymphocytes. IL-2 is a major T cell growth and survival factor that is responsible for inducing Jak1, Jak3, and STAT5 phosphorylation, as well as causing STAT5 to translocate to the nucleus and bind regulatory elements in the genome. In this study, we show that adenosine suppressed IL-2-dependent proliferation of CTLL-2 T cells by inhibiting STAT5a/b tyrosine phosphorylation that is associated with IL-2R signaling without affecting IL-2-induced phosphorylation of Jak1 or Jak3. The inhibitory effect of adenosine on IL-2-induced STAT5a/b tyrosine phosphorylation was reversed by the protein tyrosine phosphatase inhibitors sodium orthovanadate and bpV(phen). Adenosine dramatically increased Src homology region 2 domain-containing phosphatase-2 (SHP-2) tyrosine phosphorylation and its association with STAT5 in IL-2-stimulated CTLL-2 T cells, implicating SHP-2 in adenosine-induced STAT5a/b dephosphorylation. The inhibitory effect of adenosine on IL-2-induced STAT5a/b tyrosine phosphorylation was reproduced by A(2) receptor agonists and was blocked by selective A(2a) and A(2b) receptor antagonists, indicating that adenosine was mediating its effect through A(2) receptors. Inhibition of STAT5a/b phosphorylation was reproduced with cell-permeable 8-bromo-cAMP or forskolin-induced activation of adenylyl cyclase, and blocked by the cAMP/protein kinase A inhibitor Rp-cAMP. Forskolin and 8-bromo-cAMP also induced SHP-2 tyrosine phosphorylation. Collectively, these findings suggest that adenosine acts through A(2) receptors and associated cAMP/protein kinase A-dependent signaling pathways to activate SHP-2 and cause STAT5 dephosphorylation that results in reduced IL-2R signaling in T cells.  相似文献   

6.
7.
Experimental autoimmune encephalomyelitis (EAE) is a CD4 Th1-mediated inflammatory demyelinating disorder of the CNS and a well-established animal model for multiple sclerosis. Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1) is a cytosolic tyrosine phosphatase that is involved in regulating the T cell activation cascade from signals initiated through the TCR. To study the role of SHP-1 in EAE pathogenesis, we immunized B10.PL mice heterozygous for deletion of the SHP-1 gene (me(v+/-)) and B10.PL wild-type mice with the immunodominant epitope of myelin basic protein (MBP Ac1-11). T cell proliferation and IFN-gamma production were significantly increased in me(v+/-) mice after immunization with MBP Ac1-11. The frequency of MBP Ac1-11-specific CD4 T cells, analyzed by staining with fluorescently labeled tetramers (MBP1-11[4Y]: I-A(u) complexes), was increased in the draining lymph node cells of me(v+/-) mice compared with wild-type mice. In addition, me(v+/-) mice developed a more severe course of EAE with epitope spreading to proteolipid protein peptide 43-64. Finally, expansion of MBP Ac1-11-specific T cells in response to Ag was enhanced in me(v+/-) T cells, particularly at lower Ag concentrations. These data demonstrate that the level of SHP-1 plays an important role in regulating the activation threshold of autoreactive T cells.  相似文献   

8.
Neutrophils, an essential component of the innate immune system, are regulated in part by signaling pathways involving protein tyrosine phosphorylation. While protein tyrosine kinase functions in regulating neutrophil behavior have been extensively investigated, little is known about the role for specific protein tyrosine phosphatases (PTP) in modulating neutrophil signaling cascades. A key role for Src homology 2 domain-containing phosphatase 1 (SHP-1), a PTP, in neutrophil physiology is, however, implied by the overexpansion and inappropriate activation of granulocyte populations in SHP-1-deficient motheaten (me/me) and motheaten viable (me(v)/me(v)) mice. To directly investigate the importance of SHP-1 to phagocytic cell function, bone marrow neutrophils were isolated from both me/me and me(v)/me(v) mice and examined with respect to their responses to various stimuli. The results of these studies revealed that both quiescent and activated neutrophils from motheaten mice manifested enhanced tyrosine phosphorylation of cellular proteins in the 60- to 80-kDa range relative to that detected in wild-type congenic control neutrophils. MOTHEATEN: neutrophils also demonstrated increased oxidant production, surface expression of CD18, and adhesion to protein-coated plastic. Chemotaxis, however, was severely diminished in the SHP-deficient neutrophils relative to control neutrophils, which was possibly attributable to a combination of defective deadhesion and altered actin assembly. Taken together, these results indicate a significant role for SHP-1 in modulating the tyrosine phosphorylation-dependent signaling pathways that regulate neutrophil microbicidal functions.  相似文献   

9.
In this study we demonstrated that CD4(+) T cells from STAT4(-/-) mice exhibit reduced IL-12R expression and poor IL-12R signaling function. This raised the question of whether activated STAT4 participates in Th1 cell development mainly through its effects on IL-12 signaling. In a first approach to this question we determined the capacity of CD4(+) T cells from STAT4(-/-) bearing an IL-12Rbeta2 chain transgene (and thus capable of normal IL-12R expression and signaling) to undergo Th1 differentiation when stimulated by Con A and APCs. We found that such cells were still unable to exhibit IL-12-mediated IFN-gamma production. In a second approach to this question, we created Th2 cell lines (D10 cells) transfected with STAT4-expressing plasmids with various tyrosine-->phenylalanine mutations and CD4(+) T cell lines from IL-12beta2(-/-) mice infected with retroviruses expressing similarly STAT4 mutations that nevertheless express surface IL-12Rbeta2 chains. We then showed that constructs that were unable to support STAT4 tyrosine phosphorylation (in D10 cells) as a result of mutation were also incapable of supporting IL-12-induced IFN-gamma production (in IL-12Rbeta2(-/-) cells). Thus, by two complementary approaches we demonstrated that activated STAT4 has an essential downstream role in Th1 cell differentiation that is independent of its role in the support of IL-12Rbeta2 chain signaling. This implies that STAT4 is an essential element in the early events of Th1 differentiation.  相似文献   

10.
IL-12 and IL-2 can stimulate mitogen- or CD3-activated T cells to proliferate, produce IFN-gamma, and kill tumor cells. The magnitude of these functional responses is greatly augmented when T cells are activated by the combination of IL-12 and IL-2. Although peripheral blood T cells are largely unresponsive to these cytokines without prior activation, a small subset of CD8+ T cells (CD8+CD18bright) is strongly activated by the combination of IL-12 and IL-2. In this report we show that the functional synergy between IL-12 and IL-2 in CD8+CD18bright T cells correlates with the activation of the stress kinases, p38 mitogen-activated protein (MAP) kinase and stress-activated protein kinase (SAPK)/Jun N-terminal kinase, but not with the activation of the extracellular signal-regulated kinases. The functional synergy between IL-2 and IL-12 is also associated with a prominent increase in STAT1 and STAT3 serine phosphorylation over that observed with IL-12 or IL-2 alone. By contrast, STAT tyrosine phosphorylation is not augmented over that seen with either cytokine alone. A specific inhibitor of p38 MAP kinase completely inhibits the serine phosphorylation of STAT1 and STAT3 induced by IL-12 and IL-2 and abrogates the functional synergy between IL-12 and IL-2 without affecting STAT tyrosine phosphorylation. This suggests that p38 MAP kinase may play an important role in regulating STAT serine phosphorylation in response to the combination of IL-12 and IL-2. Furthermore, these findings indicate that the optimal activation of T cells by IL-12 and IL-2 may depend on an interaction between the p38 MAP kinase and Janus kinase/STAT signaling pathways.  相似文献   

11.
Mice deficient for the STAT6 gene (STAT6(-/-) mice) have enhanced immunosurveillance against primary and metastatic tumors. Because STAT6 is a downstream effector of the IL-4R, and IL-13 binds to the type 2 IL-4R, IL-13 has been proposed as an inhibitor that blocks differentiation of tumor-specific CD8(+) T cells. Immunity in STAT6(-/-) mice is unusually effective in that 45-80% of STAT6(-/-) mice with established, spontaneous metastatic 4T1 mammary carcinoma, whose primary tumors are surgically excised, survive indefinitely, as compared with <10% of STAT(+/+) (BALB/c) mice. Surprisingly, STAT6(-/-) and BALB/c reciprocal bone marrow chimeras do not have increased immunosurveillance, demonstrating that immunity requires STAT6(-/-) hemopoietic and nonhemopoietic components. Likewise, CD1(-/-) mice that are NKT deficient and therefore IL-13 deficient also have heightened tumor immunity. However, STAT6(-/-) and CD1(-/-) reciprocal bone marrow chimeras do not have increased survival, suggesting that immunity in STAT6(-/-) and CD1(-/-) mice is via noncomplementing mechanisms. Metastatic disease is not reduced in BALB/c mice treated with an IL-13 inhibitor, indicating that IL-13 alone is insufficient for negative regulation of 4T1 immunity. Likewise, in vivo depletion of CD4(+)CD25(+) T cells in BALB/c mice does not increase survival, demonstrating that CD4(+)CD25(+) cells do not regulate immunity. Cytokine production and tumor challenges into STAT6(-/-)IFN-gamma(-/-) mice indicate that IFN-gamma is essential for immunity. Therefore, immunosurveillance in STAT6(-/-) mice facilitates survival against metastatic cancer via an IFN-gamma-dependent mechanism involving hemopoietic and nonhemopoietic derived cells, and is not exclusively dependent on counteracting IL-13 or CD4(+)CD25(+) T cells.  相似文献   

12.
T lymphocyte survival, proliferation, and death in the periphery are dependent on several cytokines. Many of these cytokines induce the expression of suppressor of cytokine signaling-1 (SOCS1), a feedback inhibitor of JAK kinases. However, it is unclear whether the cytokines that regulate T lymphocyte homeostasis are critically regulated by SOCS1 in vivo. Using SOCS1(-/-)IFN-gamma(-/-) mice we show that SOCS1 deficiency causes a lymphoproliferative disorder characterized by decreased CD4/CD8 ratio due to chronic accumulation of CD8+CD44(high) memory phenotype T cells. SOCS1-deficient CD8+ T cells express elevated levels of IL-2Rbeta, show increased proliferative response to IL-15 and IL-2 in vitro, and undergo increased bystander proliferation and vigorous homeostatic expansion in vivo. Sorted CD8+CD44(high) T cells from SOCS1(-/-)IFN-gamma(-/-) mice respond 5 times more strongly than control cells, indicating that SOCS1 is a critical regulator of IL-15R signaling. Consistent with this idea, IL-15 stimulates sustained STAT5 phosphorylation in SOCS1-deficient CD8+ T cells. IL-15 strongly induces TNF-alpha production in SOCS1-deficient CD8+ T cells, indicating that SOCS1 is also a critical regulator of CD8+ T cell activation by IL-15. However, IL-15 and IL-2 induce comparable levels of Bcl-2 and Bcl-x(L) in SOCS1-deficient and SOCS1-sufficient CD8+ T cells, suggesting that cytokine receptor signals required for inducing proliferation and cell survival signals are not identical. These results show that SOCS1 differentially regulates common gamma-chain cytokine signaling in CD8+ T cells and suggest that CD8+ T cell homeostasis is maintained by distinct mechanisms that control cytokine-mediated survival and proliferation signals.  相似文献   

13.
To study the mechanism by which protein tyrosine phosphatases (PTPs) regulate CD3-induced tyrosine phosphorylation, we investigated the distribution of PTPs in subdomains of plasma membrane. We report here that the bulk PTP activity associated with T cell membrane is present outside the lipid rafts, as determined by sucrose density gradient sedimentation. In Jurkat T cells, approximately 5--10% of Src homology 2 domain-containing tyrosine phosphatase (SHP-1) is constitutively associated with plasma membrane, and nearly 50% of SHP-2 is translocated to plasma membrane after vanadate treatment. Similar to transmembrane PTP, CD45, the membrane-associated populations of SHP-1 and SHP-2 are essentially excluded from lipid rafts, where other signaling molecules such as Lck, linker for activation of T cells, and CD3 zeta are enriched. We further demonstrated that CD3-induced tyrosine phosphorylation of these substrates is largely restricted to lipid rafts, unless PTPs are inhibited. It suggests that a restricted partition of PTPs among membrane subdomains may regulate protein tyrosine phosphorylation in T cell membrane. To test this hypothesis, we targeted SHP-1 into lipid rafts by using the N-terminal region of Lck (residues 1--14). The results indicate that the expression of Lck/SHP-1 chimera inside lipid rafts profoundly inhibits CD3-induced tyrosine phosphorylation of CD3 zeta/epsilon, IL-2 generation, and nuclear mobilization of NF-AT. Collectively, these results suggest that the exclusion of PTPs from lipid rafts may be a mechanism that potentiates TCR/CD3 activation.  相似文献   

14.
IFN-gamma is the primary mediator of anti-parasite effector mechanisms against Toxoplasma gondii. After intraperitoneal infection with the Fukaya strain of T. gondii, unirradiated IFN-gamma knock-out (GKO) mice transferred with wild type (WT) CD8+ effector T cells from infected mice failed to induce the production of IFN-gamma and died, whereas irradiated (IR) GKO mice transferred with WT CD8+ T cells induced IFN-y production and survived more than 6 months. IR GKO mice transferred with WT CD8+ T cells together with GKO B-2 cells died 8 days after infection, whereas those transferred with WT CD8+ T cells together with B-la or T cells survived. B-2 cells of infected GKO mice activated CD11b+ cells for IL-4 production, and down-regulated NO release, STAT1 phosphorylation, and interferon regulatory factor-1 expression in the peritoneal exudates cells of IR GKO mice transferred with WT CD8+ T cells together with GKO B-2 cells after infection. Thus, B-2 cells in T. gondii-infected mice act as suppressor cells in the host defense of infected mice.  相似文献   

15.
The interleukin-23 (IL-23) pathway plays a critical role in the pathogenesis of multiple chronic inflammatory disorders, however, inter-individual variability in IL-23-induced signal transduction in circulating human lymphocytes has not been well-defined. In this study, we observed marked, reproducible inter-individual differences in IL-23 responsiveness (measured by STAT3 phosphorylation) in peripheral blood CD8+CD45RO+ memory T and CD3+CD56+ NKT cells. Age, but not gender, was a significant (Pearson’s correlation coefficient, r = −0.37, p = 0.001) source of variability observed in CD8+CD45RO+ memory T cells, with IL-23 responsiveness gradually decreasing with increasing age. Relative to cells from individuals demonstrating low responsiveness to IL-23 stimulation, CD8+CD45RO+ memory T cells from individuals demonstrating high responsiveness to IL-23 stimulation showed increased gene expression for IL-23 receptor (IL-23R), RORC (RORγt) and CD161 (KLRB1), whereas RORA (RORα) and STAT3 expression were equivalent. Similar to CD4+ memory T cells, IL-23 responsiveness is confined to the CD161+ subset in CD8+CD45RO+ memory T cells, suggesting a similar CD161+ precursor as has been reported for CD4+ Th17 cells. We observed a very strong positive correlation between IL-23 responsiveness and the fraction of CD161+, CD8+CD45RO+ memory T cells (r = 0.80, p<0.001). Moreover, the fraction of CD161+, CD8+CD45RO+ memory T cells gradually decreases with aging (r = −0.34, p = 0.05). Our data define the inter-individual differences in IL-23 responsiveness in peripheral blood lymphocytes from the general population. Variable expression of CD161, IL-23R and RORC affects IL-23 responsiveness and contributes to the inter-individual susceptibility to IL-23-mediated defenses and inflammatory processes.  相似文献   

16.
Activation-induced cytidine deaminase (AID) plays critical roles in Ig class switch recombination and V(H) gene somatic hypermutation. We investigated the role of IL-4 in AID mRNA induction, the signaling transduction involved in IL-4-mediated AID induction, and the effect of CD45 on IL-4-dependent AID expression in human B cells. IL-4 was able to induce AID expression in human primary B cells and B cell lines, and IL-4-induced AID expression was further enhanced by CD40 signaling. IL-4-dependent AID induction was inhibited by a dominant-negative STAT6, indicating that IL-4 induced AID expression via the Janus kinase (JAK)/STAT6 signaling pathway. Moreover, triggering of CD45 with anti-CD45 Abs can inhibit IL-4-induced AID expression, and this CD45-mediated AID inhibition correlated with the ability of anti-CD45 to suppress IL-4-activated JAK1, JAK3, and STAT6 phosphorylations. Thus, in humans, IL-4 alone is sufficient to drive AID expression, and CD40 signaling is required for optimal AID production; IL-4-induced AID expression is mediated via the JAK/STAT signaling pathway, and can be negatively regulated by the JAK phosphatase activity of CD45. This study indicates that the JAK phosphatase activity of CD45 can be induced by anti-CD45 Ab treatment, and this principle may find clinical application in modulation of JAK activation in immune-mediated diseases.  相似文献   

17.
Src homology 2 domain-containing protein tyrosine phosphatase-1 (SHP-1) plays an important role in T and B lymphocyte signaling; however, the function of SHP-1 in Th cell differentiation, in particular, the Th1 response, has not been defined. In this study, we provide evidence that SHP-1 phosphatase negatively regulates Th1 cell development and IFN-gamma production. Compared with the wild-type control, anti-CD3-activated mouse T lymphocytes carrying the motheaten viable mutation in the SHP-1 gene produced a significantly increased amount of IFN-gamma in the presence of IL-12. This increase was also seen at the basal level without IL-12 addition. Similarly, Th1 cell differentiation and proliferation of anti-CD3-activated SHP-1 mutant lymph node cells in the presence or absence of IL-12 were markedly enhanced, indicating a negative role for SHP-1 phosphatase in such lymphocyte activities. Interestingly, IL-12-induced activation of Jak2 and STAT4, critical components for IL-12-mediated cellular responses, was shortened or attenuated in mutant T cells. Together these results suggest that SHP-1 negatively regulates Th1 cell development and functions through a mechanism that is not directly related to IL-12 signaling.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号