首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments were performed to demonstrate the involvement of electron transport system in fatty acid elongation in rat brain microsomes. Mercuric chloride and p-chloromercuriphenylsulfonate, inhibitors on NADH-cytochrome b5 reductase, at 32 microM inhibited NADH-supported palmitoyl-CoA elongation to 30 and 60% of control activity, respectively, whereas NADPH-supported palmitoyl-CoA elongation was unaffected by these mercurials. An antibody to rat liver NADH-cytochrome b5 reductase inhibited brain microsomal NADH-cytochrome b5 reductase activity and NADH-dependent palmitoyl-CoA elongation. Treatment of brain microsomes with trypsin diminished the cytochrome b5 content; NADH- and NADPH-cytochrome c reductase activities were significantly decreased, but the decrease in NADH-cytochrome b5 reductase activity was relatively small. Whereas essentially no incorporation of malonyl-CoA into palmitoyl-CoA was observed with trypsin-treated microsomes, addition of detergent-solubilized cytochrome b5 resulted in a recovery of fatty acid elongation. These results indicate the presence of an electron transport system, NADH-NADH-cytochrome b5 reductase-cytochrome b5-fatty acid elongation, in brain microsomes.  相似文献   

2.
NADH-cytochrome b5 reductase [EC 1.6.2.2] has been solubilized with Triton X-100 and purified to homogeneity from rabbit liver microsomes. The purified enzyme is essentially free of the detergent and phospholipids and exists in aqueous media as an oligomeric aggregate of about 13 S. Its monomeric molecular weight is about 33,000 and 1 mole of FAD is associated with 1 mole of the monomeric unit. The enzyme catalyzes the reductions by NADH of ferricyanide and 2,6-dichlorophenol indophenol at an activity ratio of 1 : 0.09. Although the intact form of cytochrome b5 is a poorer electron acceptor than its hydrophilic fragment for the purified flavoprotein, electron transfer from the reductase to the intact cytochrome can be markedly stimulated by detergents or phospholipids, which also cause profound enhancement of the NADH-cytochrome c reductase activity reconstituted from the reducatse and cytochrome b5. Upon digestion with trypsin [EC 3.4.21.4], the ability of the reductase to form an active NADH-cytochrome c reductase system with the intact form of cytochrome b5 and Triton X-100 is rapidly lost. This loss of the reconstitution capability can be prevented by preincubation of the reductase with phosphatidylcholine liposomes. Trypsin digestion also results in the cleavage of the reductase molecule to a protein having a molecular weight of about 25,000 and a smaller fragment. The purified flavoprotein can bind to liver microsomes, liver mitochondria, sonicated human erythrocyte ghosts, and phosphatidylcholine liposomes. The reductase solubilized directly from liver microsomes by lysosomal digestion however, is devoid of membrane-binding capacity. It is concluded that the intact form of NADH-cytochrome b5 reductase is an amphipathic protein and its hydrophobic moiety, which is removable by lysosomal digestion, is responsible for the tight binding of the reductase to microsomes and for its normal functioning in the membrane.  相似文献   

3.
Propylthiouracil, a selective inhibitor of NADH-cytochrome b5 reductase   总被引:1,自引:0,他引:1  
E Lee  K Kariya 《FEBS letters》1986,209(1):49-51
Propylthiouracil inhibited the activity of NADH-cytochrome b5 reductase of rat liver microsomes using potassium ferricyanide as electron acceptor. On the other hand, NADPH-cytochrome P-450 reductase activity was not affected by the compound. NADH-supported reduction of cytochrome b5 was also inhibited by propylthiouracil in the reconstituted system consisting of cytochrome b5 and partially purified NADH-cytochrome b5 reductase.  相似文献   

4.
Vanadate-dependent NAD(P)H oxidation, catalyzed by rat liver microsomes and microsomal NADPH-cytochrome P450 reductase (P450 reductase) and NADH-cytochrome b5 reductase (b5 reductase), was investigated. These enzymes and intact microsomes catalyzed NAD(P)H oxidation in the presence of either ortho- or polyvanadate. Antibody to P450 reductase inhibited orthovanadate-dependent NADPH oxidation catalyzed by either purified P450 reductase or rat liver microsomes and had no effect on the rates of NADH oxidation catalyzed by b5 reductase. NADPH-cytochrome P450 reductase catalyzed orthovanadate-dependent NADPH oxidation five times faster than NADH-cytochrome b5 reductase catalyzed NADH oxidation. Orthovanadate-dependent oxidation of either NADPH or NADH, catalyzed by purified reductases or rat liver microsomes, occurred in an anaerobic system, which indicated that superoxide is not an obligate intermediate in this process. Superoxide dismutase (SOD) inhibited orthovanadate, but not polyvanadate-mediated, enzyme-dependent NAD(P)H oxidation. SOD also inhibited when pyridine nucleotide oxidation was conducted anaerobically, suggesting that SOD inhibits vanadate-dependent NAD(P)H oxidation by a mechanism independent of scavenging of O2-.  相似文献   

5.
In a number of animal species soluble NADH-cytochrome b5 reductase of erythrocytes was compared with membrane-bound NADH-cytochrome b5 reductase of liver microsomes by using an antibody to purified NADH-cytochrome b5 reductase from rat liver microsomes. The results obtained indicated clearly that they are immunologically very similar to each other. The data with erythrocyte ghosts suggested that cytochrome b5 and NADH-cytochrome b5 reductase are also present in the ghost.  相似文献   

6.
The presence of NADH-cytochrome b5 reductase [EC 1.6.2.2] in microsomes from anaerobically grown yeast was confirmed by its isolation and purification. The purified preparation of the reductase showed an apparent molecular weight of 27,000 daltons. The reductase appeared to contain loosely-bound FAD as a prosthetic group. The reductase required NADH as a specific electron donor, and could reduce some redox dyes as well as cytochrom b5. The reductase, however, could not reduce cytochrome c. Michaelis constants of the reductase for NADH and calf liver cytochrome b5 were 6.3 and 1.5 micron M, respectively, and optimal pH for cytochrome b5 reduction was 5.6. Although some differences exist between the properties of NADH-cytochrome b5 reductase from yeast and from mammalia, the results indicate a functional similarity of the present enzyme to mammalian NADH-cytochrome b5 reductase in the microsomal electron-transport system.  相似文献   

7.
NADH could support the lipid peroxidation of rat liver microsomes in the presence of ferric ions chelated by ADP(ADP-Fe). The reaction had a broad pH optimum (pH 5.8--7.4) and was more active in the acidic pH range. Antibodies to NADH-cytochrome b5 reductase [EC 1.6.2.2] and cytochrome b5 inhibited NADH-dependent lipid peroxidation in the presence of ADP-Fe, whereas the antibody against NADPH-cytochrome c reductase [EC 1.6.2.4] showed no inhibition. These oberservations suggest that the electron from NADH was supplied to the lipid peroxidation reaction via NADH-cytochrome b5 reductase and cytochrome b5. On the other hand, NADPH-supported lipid peroxidation was strongly inhibited by the antibody against NADPH-cytochrome c reductase, confirming the participation of this this flavoprotein in the NADPH-dependent reaction. In the presence of both ADP-Fe and ferric ions chelated by EDTA(EDTA-Fe), NADH-dependent lipid peroxidation was highly stimulated up to the level of the NADPH-dependent reaction. In this case, the antibody against cytochrome b5 could not inhibit the reaction, while the antibody against NADH-cytochrome b5 reductase did inhibit it, suggesting the direct transfer of electrons from NADH-cytochrome b5 reductase to EDTA-Fe complex.  相似文献   

8.
The complete covalent structure of liver microsomal NADH-cytochrome b5 reductase from steer liver microsomes was determined. Cleavage at methionyl bonds gave 10 peptides accounting for all the residues of the protein. Acid cleavage of the reductase at the Asp-Pro bonds gave three peptides accounting for all the CNBr peptides in the molecule. Subfragmentation of these peptides by chemical and enzymatic cleavage provided overlaps which established all the fragments in an unambiguous sequence of 300 residues, corresponding to Mr 34,110. Limited tryptic digestion cleaved reductase at residues 28 and 119, yielding a preparation having two noncovalently linked peptides having a conformation which binds flavin and retains the structural features essential for NADH-cytochrome b5 activity. A model for the secondary structure of cytochrome b5 reductase is proposed that is based on computer-assisted analysis of the amino acid sequence. In this model the beta-turns are predominant and there is some 25% alpha and 30% beta structure.  相似文献   

9.
NADH-cytochrome b5 reductase from hog gastric microsomes was studied with respect to substrate dependence, optimum pH, thermal denaturation as well as anti-cytochrome b5 antibodies and different ions. The reduction of potassium ferricyanide by the enzyme was specific for NADH. Using potassium ferricyanide or trypsin-solubilized liver cytochrome b5 (Tb5) as substrates, enzyme activity was inhibited by ADP and to a lesser extent by ATP. Tb5- (but not ferricyanide-) reductase was activated by ionic strength up to 0.05 ion equivalent per liter and inhibited at higher strengths whatever the ion used (Cl-, Na+, Ca2+, Mg2+). Enzyme solubilization occurred with Triton X100. The solubilization increased the Tb5- (but not the ferricyanide-) reductase activity up to a Triton:protein ratio of 15. We therefore suggest that gastric microsomes contain a Triton soluble membrane-bound NADH cytochrome b5 reductase which is in many respects similar to the liver and red cell enzymes.  相似文献   

10.
Electron transport from untreated to mersalyzed microsomal vesicles at the level of NADH-cytochrome b5 reductase or cytochrome b5 has been demonstrated in the absence of added water-soluble electron carriers. A similar effect was shown in the systems "intact mitochondria - mersalyzed microsomes" and "mersalyzed mtiochondria - untreated microsomes". No measurable electron transport between intact and mersalyzed particles of inner mitochondrial membrane was found. The obtained data suggest that the capability to carry out intermembrane electron transfer is specific for NADH-cytochrome b5 reductase and/or cytochrome b5, localized in microsomal and outer mitochondrial membranes.  相似文献   

11.
K Mihara  R Sato  R Sakakibara  H Wada 《Biochemistry》1978,17(14):2839-2834
Microsomal NADH-cytochrome b5 reductase is an amphiphilic protein consisting of a hydrophilic (catalytic) region and a hydrophobic (membrane-binding) segment. Digestion of the reductase purified from rabbit liver microsomes with carboxypeptidase Y (CPY), but not with aminopeptidases, resulted in the abolishment of the capacities of the reductase to bind to phosphatidylcholine liposomes and to reconstitute an active NADH-cytochrome c reductase system upon mixing with cytochrome b5. The NADH-ferricyanide reductase activity of the flavoprotein was, however, inactivated only slightly by the CPY digestion. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and amino acid analyses indicated that the CPY treatment removed about 30 amino acid residues from the tcooh terminus of the reductase and that about 70% of the amino acids released were hydrophobic. It is concluded that the hydrophobic region of the reductase, responsible for both membrane binding and effective reconstitution of NADH-cytochrome c reductase activity, is located at the COOH-terminal portion of the molecule. No NH2-terminal residue could be detected in the intact and CPY-modified reductase preparations. The location of the hydrophobic, membrane-binding segment at the COOH-terminal end and the masked NH2 terminus have also been reported for cytochrome b5, another microsomal membrane protein.  相似文献   

12.
Cytochrome b5 was purified from detergent solubilized sheep liver microsomes by using three successive DEAE-cellulose, and Sephadex G-100 column chromatographies. It was purified 54-fold and the yield was 23.5% with respect to microsomes. The apparent Mr of cytochrome b5 was estimated to be 16,200 +/- 500 by SDS-PAGE. Absolute absorption spectrum of the purified cytochrome b5 showed maximal absorption at 412 nm and dithionite-reduced cytochrome b5 gave peaks at 557, 526.5 and 423 nm. The ability of the purified sheep liver cytochrome b5 to transfer electrons from NADH-cytochrome b5 reductase to cytochrome c was investigated. The K(m) and Vmax values were calculated to be 0.088 microM cytochrome b5 and 315.8 microM cytochrome c reduced/min/mg enzyme, respectively. Also the reduction of cytochrome b5 by reductase was studied and K(m) and Vmax values were determined to be 5 microM cytochrome b5 and 5200 nmol cytochrome b5 reduced/min/mg enzyme, respectively. The K(m) and Vmax values for the cofactor NADH in the presence of saturating concentration of cytochrome b5 were found to be 0.0017 mM NADH and 6944 nmol cytochrome b5 reduced/min/mg enzyme, respectively. NADH-cytochrome b5 reductase was also partially purified from the same source, detergent solubilized sheep liver microsomes, by using two successive DEAE-cellulose, and 5'-ADP-agarose affinity column chromatographies. It was purified 144-fold and the yield was 7% with respect to microsomes. The apparent monomer Mr of reductase was estimated to be 34,000 by SDS-PAGE. When ferricyanide was used as an electron acceptor, reductase showed maximum activity between 6.8 and 7.5. The K(m) and Vmax values of the enzyme for ferricyanide were calculated as 0.024 mM ferricyanide and 673 mumol ferricyanide reduced/min/mg enzyme, respectively. The K(m) and Vmax values for the cofactor NADH in the presence of saturating amounts of ferricyanide were found to be 0.020 mM NADH and 699 mumol ferricyanide reduced/min/mg enzyme, respectively.  相似文献   

13.
Bovine brain microsomal NADH-cytochrome b5 (cyt. b5) reductase [EC 1.6.2.2] was solubilized by digestion with lysosomes, and purified 8,500-fold with a 20% recovery by procedures including affinity chromatography on 5'-AMP-Sepharose 4B. The purified enzyme showed one band of a molecular weight of 31,000 on polyacrylamide gel electrophoresis with sodium dodecyl sulfate (SDS). Polyacrylamide gel electrophoresis of the purified enzyme without SDS revealed a major band with a faint minor band, both of which exhibited NADH-cyt. b5 reductase activity. The isoelectric points of these components were 6.0 (major) and 6.3 (minor). The apparent Km values of the purified enzyme for NADH and ferricyanide were 1.1 and 4.2 microM, respectively. The apparent Km value for cyt. b5 was 14.3 microM in 10 mM potassium phosphate buffer (pH 7.5). The apparent Vmax value was 1,190 mumol cyt. b5 reduced/min/mg of protein. The NADH-cyt. b5 reductase activity of the purified enzyme was inhibited by sulfhydryl inhibitors and flavin analogues. Inhibition by phosphate buffer or other inorganic salts of the enzyme activity of the purified enzyme was proved to be of the competitive type. These properties were similar to those of NADH-cyt. b5 reductase from bovine liver microsomes or rabbit erythrocytes, although the estimated enzyme content in brain was about one-twentieth of that in liver (per g wet tissue). An immunochemical study using an antibody to purified NADH-cyt. b5 reductase bovine liver microsomes indicated that NADH-cyt. b5 reductase from brain microsomes is immunologically identical to the liver microsomal enzyme.  相似文献   

14.
The subcellular distribution of NADH-cytochrome b5 reductase in rat liver cells was reinvestigated. In fresh heavy and light Golgi fractions (GF3 and GF1 + 2) and in mitochondria, the specific activity of rotenone-insensitive NADH-cytochrome c reductase was approximately 100, 60, and 30%, respectively, of the value found in microsomes. However, the Golgi enzyme was unstable inasmuch as pelleting and resuspending the fresh fractions resulted in a considerable inactivation (40--60%), which was further increased with subsequent storage at 4 degrees C. A similar inactivation was observed using cytochrome b5 but not ferricyanide as electron acceptor. The inactivation of Golgi NADH-cytochrome c reductase activity was independent of the protein concentration of the fractions during storage, was unaffected by the addition of the antioxidant butylated hydroxytoluene, but was partly prevented by buffering the fractions at neutral pH and by storage at--20 degrees C. A total Golgi fraction was analyzed by density equilibration on continuous sucrose gradients after exposure to digitonin. As expected, the distribution of both protein and galactosyl transferase were shifted to higher densities by this treatment. However, not all galactosyl transferase-bearing elements were shifted to the same extent by exposure to the detergent, suggesting a biochemical heterogeneity of the Golgi complex. In contrast to their behavior in microsomes, the distribution of NADH- cytochrome c reductase and cytochrome b5 of Golgi fractions was shifted by digitonin, although to a lesser extent than that of galactosyl transferase. These results indicate that NADH-cytochrome b5 reductase is an authentic component of Golgi membranes, as well as of microsomes and of mitochondria. The conflicting results reported in the past on the Golgi localization of the enzyme could be due, on the one hand, to the differential lability of the activity in its various subcellular locations and, on the other, to the heterogeneity of the Golgi complex in terms of both cholesterol and enzyme distribution.  相似文献   

15.
Biotransformation involving nitrogen are of pharmacological and toxicological relevance. In principle, nitrogen containing functional groups can undergo all the known biotransformation processes such as oxidation, reduction, hydrolysis and formation of conjugates. For the N-reduction of benzamidoxime an oxygen-insensitive liver microsomal enzyme system that required cytochrome b5, NADH-cytochrome b5 reductase and a cytochrome P450 isoenzyme of the subfamily 2D has been described. In previous studies it was demonstrated that N-hydroxylated derivates of strongly basic functional groups are easily reduced by this enzyme system. The N-hydroxylation of sulfonamides such sulfamethoxazole (SMX) and dapsone (DDS) to sulfamethoxazole-hydroxylamine (SMX-HA) and dapsone-hydroxylamine (DDS-N-OH), respectively is the first step in the formation of reactive metabolites. Therefore it seemed reasonable to study the potential of cytochrome b5, NADH-cytochrome b5 reductase and CYP2D to detoxify these N-hydroxylated metabolites by N-reduction. Metabolites were analysed by HPLC analysis. SMX-HA and DDS-N-OH are reduced by cytochrome b5, NADH-cytochrome b5 reductase and CYP2D but also only by cytochrome b5 and NADH-cytochrome b5 reductase without addition of CYP2D. The reduction rate for SMX-HA by cytochrome b5, NADH-cytochrome b5 reductase and CYP2D was 0,65 +/- 0,1 nmol SMX/min/mg protein. The reduction rate by b5 and b5 reductase was 0,37 +/- 0,15 nmol SMX/min/mg protein. For DDS-N-OH the reduction rate by cytochrome b5, NADH-cytochrome b5 reductase and CYP2D was 1.79 +/- 0.85 nmol DDS/min/mg protein and by cytochrome b5 and NADH-cytochrome b5 reductase 1.25 +/- 0.15 nmol DDS/min/mg protein. Cytochrome b5, NADH-cytochrome b5 reductase are therefore involved in the detoxification of these reactive hydroxylamines and CYP2D increased the N-reduction.  相似文献   

16.
The role of NADH-cytochrome b5 reductase and cytochrome b5 as electron carriers in NADH-supported electron transport reactions in rat liver microsomes has been examined by measuring three enzyme activities: NADH-cytochrome P-450 reductase, NADH-peroxidase, and NADH-cytochrome c reductase. The first two reactions are known to involve the participation of an NADH-specific reductase and cytochrome P-450 whereas the third requires the reductase and cytochrome b5. Antibody prepared against NADH-cytochrome b5 reductase markedly inhibited the NADH-peroxidase and NADH-cytochrome c reductase activities suggesting the involvement of this NADH-specific reductase in these reactions. Liver microsomes prepared from phenobarbital-pretreated rats were digested with subtilisin to remove cytochrome b5 and the submicrosomal particles were collected by centrifugation. The specific content of cytochrome b5 in the digested particles was about 5% of that originally present in liver microsomes and all three enzyme activities showed similar decreases whereas NADH-ferricyanide reductase activity (an activity associated with the flavoenzyme NADH-cytochrome b5 reductase) remained virtually unchanged. Binding of an excess of detergent-purified cytochrome b5 to the submicrosomal particles at 37 °C for 20 min followed by centrifugation and enzymic measurements revealed a striking increase in the three enzyme activities. Further evidence for cytochrome b5 involvement in the NADH-peroxidase reaction was the marked inhibition by antibody prepared against the hemoprotein. These results suggest that in microsomal NADH-supported cytochrome P-450-dependent electron transport reactions, cytochrome b5 functions as an intermediate electron carrier between NADH-cytochrome b5 reductase and cytochrome P-450.  相似文献   

17.
Microsomes from rat liver were extracted by low ionic strength solutions. Extracted microsomes lost most of the linoleic acid desaturation activity. The addition of the extract back into the extracted microsomes was necessary to restore full desaturation activity. The soluble fraction had no desaturation activity. The existence of a soluble factor loosely bound to the microsomes, stable to sonication, and unstable to heat and trypsin digestion was recognized. This protein could not be replaced by albumin. The factor was also essential for the oxidative desaturation of palmitic, stearic, linoleic, and gamma-linolenic acid. The present experiment suggests that the protein factor is not NADH-cytochrome b5 reductase, cytochrome b5, or the cyanide-sensitive factor.  相似文献   

18.
NADH-cytochrome b5 reductases of rat liver microsomes, mitochondria, and heavy and light Golgi fractions (GF3 and GF 1+2) were compared by antibody inhibition and competition experiments, by peptide mapping, and by CNBr fragment analysis. The water-soluble portion of the microsomal enzyme, released by lysosomal digestion and purified by a published procedure, was used to raise antibodies in rabbits. Contaminant antimicrosome antibodies were removed from immune sera by immunoadsorption onto the purified antigen, and the F(ab')2 fragments of the pure antireductase antibody thus obtained were found to inhibit the NADH-cytochrome c reductase activity equally well in the four membrane fractions investigated, with similar dose-response relationships. Moreover, the purified water-soluble fragment of microsomal reductase, which by itself is very inefficient in reducing cytochrome c, competed for antibody binding with the membrane-bound enzymes, and therefore prevented the inhibition of their activity not only in microsomes but also in the other fractions. The reductases isolated from detergent-solubilized microsomes, mitochondria, GF3, and GF1+2 by immunoadsorption had identical mobilities in SDS polyacrylamide gels. The corresponding bands were eluted from gels, fragmented with pepsin or CNBr treatment, and the two families of peptides thus obtained were analyzed by two-dimensional mapping and SDS polyacrylamide gel electrophoresis, respectively. Both analyses failed to reveal differences among reductases of the four fractions. These findings support the hypothesis that NADH-cytochrome b5 reductase in its various subcellular locations is molecularly identical.  相似文献   

19.
The participation of a cytochrome b5-like hemoprotein of outer mitochondrial membrane (OM cytochrome b) in the NADH-semidehydroascorbate (SDA) reductase activity of rat liver was studied. NADH-SDA reductase activity was strongly inhibited by antibodies against OM cytochrome b and NADH-cytochrome b5 reductase, whereas no inhibition was caused by anti-cytochrome b5 antibody. NADH-SDA reductase exhibited the same distribution pattern as OM cytochrome b-mediated rotenone-insensitive NADH-cytochrome c reductase activity among various subcellular fractions and submitochondrial fractions. Both activities were localized in outer mitochondrial membrane. These observations suggest that OM cytochrome b-mediated rotenone-insensitive NADH-cytochrome c reductase system participates in the NADH-SDA reductase activity of rat liver.  相似文献   

20.
Microbodies (peroxisomes and glyoxysomes), mitochondria, and microsomes from rat liver, dog kidney, spinach leaves sunflower cotyledons, and castor bean endosperm were isolated by sucrose density-gradient centrifugation. The microbody-limiting membrane and microsomes each contained NADH-cytochrome c reductase and had a similar phospholipid composition. NADH-cytochrome c reductase from plant and animal microbodies and microsomes was insensitive to antimycin A, which inhibited the activity in the mitochondrial fractions. The pH optima of cytochrome c reductase in plant microbodies and microsomes was 7.5–9.0, which was 2 pH units higher than the optima for the mitochondrial form of the enzyme. The activity in animal organelles exhibited a broad pH optimum between pH 6 and 9. Rat liver peroxisomes retained cytochrome c reductase activity, when diluted with water, KCl, or EDTA solutions and reisolated. Cytochrome c reductase activity of microbodies was lost upon disruption by digitonin or Triton X-100, but other peroxisomal enzymes of the matrix were not destroyed. The microbody fraction from each tissue also contained a small amount of NADH-cytochrome b5 reductase activity. Peroxisomes from spinach leaves were broken by osmotic shock and particles from rat liver by diluting in alkaline pyrophosphate. Upon recentrifugation liver peroxisomes yielded a core fraction containing urate oxidase at a sucrose gradient density of 1.23 g × cm−3, a membrane fraction at 1.17 g × cm−3 containing NADH-cytochrome c reductase, and soluble matrix enzymes at the top of the gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号