首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human DNA-PK is a nuclear, serine/threonine protein kinase that, when activated by DNA, phosphorylates several DNA-binding substrates, including the tumor suppressor protein p53. To identify which p53 residues are phosphorylated, we examined DNA-PK's ability to phosphorylate synthetic peptides corresponding to human p53 sequences. Serines 15 and 37 in the amino-terminal transactivation domain of human p53, and serines 7 and 18 of mouse p53, were phosphorylated by DNA-PK in the context of synthetic peptides. Other serines in these p53 peptides, and serines in other p53 peptides, including peptides containing the serine 315 p34cdc2 site and the serine 392 casein kinase II site, were not recognized by DNA-PK or were phosphorylated less efficiently. Phosphorylation of the conserved serine 15 in human p53 peptides depended on the presence of an adjacent glutamine, and phosphorylation was inhibited by the presence of a nearby lysine. Phosphorylation of recombinant wild-type mouse p53 was inhibited at high DNA concentrations, suggesting that DNA-PK may phosphorylate p53 only when both are bound to DNA at nearby sites. Our study suggests that DNA-PK may have a role in regulating cell growth and indicates how phosphorylation of serine 15 in DNA-bound p53 could alter p53 function.  相似文献   

2.
D W Meek  S Simon  U Kikkawa    W Eckhart 《The EMBO journal》1990,9(10):3253-3260
The entire coding sequence of wild-type mouse p53 was expressed in Escherichia coli under control of the PL promoter of bacteriophage lambda. The bacterial p53 protein had identical mobility to p53 from SV3T3 cells on SDS polyacrylamide gels and was recognized in bacterial lysates by three p53-specific monoclonal antibodies, including PAb246 which is specific for wild-type mouse p53. Immunoprecipitates of the bacterial p53 were phosphorylated by a highly purified preparation of rat casein kinase II; the stoichiometry of incorporation was approximately 1 mol of phosphate per mol of p53. The phosphorylated residue was identified by phosphopeptide mapping as serine 389, which is a major site of p53 phosphorylation in vivo. p53 (serine 389) kinase activity was detected on lysates of SV3T3 cells; this activity co-purified with casein kinase II on phosphocellulose and Mono Q columns and was inhibited by heparin. Immunoprecipitates of the p53-T antigen complex from SV3T3 cells also had associated serine 389 kinase activity. Phosphorylation of serine 389 by this kinase was potently inhibited by heparin and quenched by excess unlabelled GTP. The data indicate that p53 is a physiological substrate of casein kinase II, which is stimulated in response to mitogens, phosphorylates nuclear oncoproteins, and may play a role in the transduction of extracellular signals to the nucleus.  相似文献   

3.
4.
The 55-kDa product of early region 1B (E1B) of human adenoviruses is required for viral replication and participates in cell transformation through complex formation with and inactivation of the cellular tumor suppressor p53. We have used both biochemical and genetic approaches to show that this 496-residue (496R) protein of adenovirus type 5 is phosphorylated at serine and threonine residues near the carboxy terminus within sequences characteristic of substrates of casein kinase II. Mutations which converted serines 490 and 491 to alanine residues decreased viral replication and greatly reduced the efficiency of transformation of primary baby rat kidney cells. Such mutant 496R proteins interacted with p53 at efficiencies similar to those of wild-type 496R but only partially inhibited p53 transactivation activity. These results indicated that phosphorylation at these carboxy-terminal sites either regulates the inhibition of p53 or regulates some other 496R function required for cell transformation.  相似文献   

5.
6.
P1, a high mobility group-like nuclear protein, phosphorylated by casein kinase II on multiple sites in situ, has been found to be phosphorylated in vitro by protein kinase C, cyclic AMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase II on multiple and mostly distinct thermolytic peptides. All these enzymes phosphorylated predominantly serine residues, with casein kinase II and protein kinase C also labeling threonine residues. Both casein kinase II and second messenger-regulated protein kinases, particularly protein kinase C, might therefore be involved in the physiological regulation of multisite phosphorylation of P1.  相似文献   

7.
Heterochromatin-associated protein 1 (HP1) is a nonhistone chromosomal protein with a dose-dependent effect on heterochromatin mediated position-effect silencing. It is multiply phosphorylated in vivo. Hyperphosphorylation of HP1 is correlated with heterochromatin assembly. We report here that HP1 is phosphorylated by casein kinase II in vivo at three serine residues located at the N and C termini of the protein. Alanine substitution mutations in the casein kinase II target phosphorylation sites dramatically reduce the heterochromatin binding activity of HP1, whereas glutamate substitution mutations, which mimic the charge contributions of phosphorylated serine, have apparently wild-type binding activity. We propose that phosphorylation of HP1 promotes protein-protein interaction between HP1 and target binding proteins in heterochromatin.  相似文献   

8.
E Durban  M Goodenough  J Mills    H Busch 《The EMBO journal》1985,4(11):2921-2926
Changes in phosphorylation modulate the activity of topoisomerase I in vitro. Specifically, enzymatic activity is stimulated by phosphorylation with a purified protein kinase (casein kinase type II). The purpose of this study was to compare the sites that are phosphorylated in vitro by casein kinase type II with the site(s) phosphorylated in vivo in rapidly growing Novikoff hepatoma cells. Topoisomerase I labeled in vitro was characterized by three major tryptic phosphopeptides (I-III). Separation of these peptides by a C18-reverse phase h.p.l.c. column resulted in their elution at fractions 18 (I), 27 (II) and 44 (III) with 17%, 22.5% and 33% acetonitrile, respectively. In contrast, only one major phosphopeptide was identified by h.p.l.c. in topoisomerase I labeled in vivo. This phosphopeptide eluted at fraction 18 corresponding to the elution properties of phosphopeptide I labeled in vitro. It also co-migrated with tryptic phosphopeptide I when subjected to high-voltage electrophoresis on thin-layer cellulose plates. Preliminary experiments suggest that phosphorylation occurs at a serine residue six amino acids from the N-terminus of the peptide. These data indicate that topoisomerase I is phosphorylated in vivo and in vitro within the same tryptic peptide and suggest that topoisomerase I is phosphorylated in vivo by casein kinase II.  相似文献   

9.
C Grose  W Jackson    J A Traugh 《Journal of virology》1989,63(9):3912-3918
Varicella-zoster virus (VZV) glycoprotein gpI is the predominant viral glycoprotein within the plasma membranes of infected cells. This viral glycoprotein is phosphorylated on its polypeptide backbone during biosynthesis. In this report, we investigated the protein kinases which participate in the phosphorylation events. Under in vivo conditions, VZV gpI was phosphorylated on its serine and threonine residues by protein kinases present within lysates of either VZV-infected or uninfected cells. Because this activity was diminished by heparin, a known inhibitor of casein kinase II, isolated gpI was incubated with purified casein kinase II and shown to be phosphorylated in an in vitro assay containing [gamma-32P]ATP. The same glycoprotein was phosphorylated when [32P]GTP was substituted for [32P]ATP in the protein kinase assay. We also tested whether VZV gpI was phosphorylated by two other ubiquitous mammalian protein kinases--casein kinase I and cyclic AMP-dependent kinase--and found that only casein kinase I modified gpI. When the predicted 623-amino-acid sequence of gpI was examined, two phosphorylation sites known to be optimal for casein kinase II were observed. Immediately upstream from each of the casein kinase II sites was a potential casein kinase I phosphorylation site. In summary, this study showed that VZV gpI was phosphorylated by each of two mammalian protein kinases (casein kinase I and casein kinase II) and that potential serine-threonine phosphorylation sites for each of these two kinases were present in the viral glycoprotein.  相似文献   

10.
11.
In human epidermal carcinoma A431 cells, the beta subunit of casein kinase II is phosphorylated at an autophosphorylation site and at serine 209 which can be phosphorylated in vitro by p34cdc2 (Litchfield, D. W., Lozeman, F. J., Cicirelli, M. F., Harrylock, M., Ericsson, L. H., Piening, C. J., and Krebs, E. G. (1991) J. Biol. Chem. 266, 20380-20389). Given the importance of p34cdc2 in the regulation of cell cycle events, we were interested in examining the phosphorylation of casein kinase II during different stages of the cell cycle. In this study it is demonstrated that the extent of phosphorylation of serine 209 in the beta subunit is significantly increased relative to phosphorylation of the autophosphorylation site when chicken bursal lymphoma BK3A cells are arrested at mitosis by nocodazole treatment. This result suggests that serine 209 is a likely physiological target for p34cdc2. In addition, the alpha subunit of casein kinase II also undergoes dramatic phosphorylation with an associated alteration in its electrophoretic mobility when BK3A cells or human Jurkat cells are arrested with nocodazole. Phosphopeptide mapping studies indicate that p34cdc2 can phosphorylate in vitro the same peptides on the alpha subunit that are phosphorylated in cells arrested at mitosis. These phosphorylation sites were localized to serine and threonine residues in the carboxyl-terminal domain of alpha. Taken together, the results of this study indicate that casein kinase II is a probable physiological substrate for p34cdc2 and suggest that its functional properties could be affected in a cell cycle-dependent manner.  相似文献   

12.
The M-phase-specific cdc2 (cell division control) protein kinase (a component of the M-phase-promoting factor) was found to activate casein kinase II in vitro. The increase in casein kinase II activity ranged over 1.5-5-fold. Increase in activity was prevented if ATP was replaced during the activation reaction by a non-hydrolysable analogue. Alkaline phosphatase treatment of the activated enzyme decreased the activity to the basal level. The beta subunit of casein kinase II was phosphorylated by cdc2 protein kinase at site(s) different from the autophosphorylation sites of the enzyme. Phosphoamino acid analysis showed that the beta subunit was phosphorylated by cdc2 protein kinase at threonine residues while autophosphorylation involved serine residues. Casein kinase II may be part of the cascade which leads to increased phosphorylation of many proteins at M-phase and therefore be involved in the pleiotropic effects of M-phase-promoting factor.  相似文献   

13.
Casein kinase II is a ubiquitous serine/threonine protein kinase which utilizes acidic amino acid residues as recognition determinants in its substrates, the motif -S/T-X-X-D/E- being particularly important. To test whether a phosphoserine residue can act as a substrate determinant, a peptide was synthesized, containing the sequence -S-X-X-S, which was not phosphorylated by casein kinase II. However, upon phosphorylation at the +3 position, the peptide became a substrate for casein kinase II. With another peptide, a positive influence of more distal phosphorylations was found. The results indicate the potential for casein kinase II to participate in hierarchal phosphorylation schemes.  相似文献   

14.
We have attempted to purify endogenous substrate proteins for casein kinases I and II from the cytosol of AH-66 hepatoma cells. Utilizing the fact that only a few substrates are concentrated in the fraction eluted from DEAE-cellulose between 0.3 and 0.6 M NaCl, two substrates were purified from this fraction by DEAE-cellulose chromatography, hydroxyapatite chromatography, and HPLC on a DEAE-5PW column. The purified substrate proteins had molecular masses of 30.5 kDa and 31 kDa. The 31-kDa protein substrate was markedly phosphorylated by casein kinase II, but only slightly by casein kinase I. The radioactive phosphate incorporated into 31-kDa substrate by casein kinase II was 0.2 mol/mol of the protein and phosphorylation occurred on both threonine and serine residues. The 30.5 kDa protein was only slightly phosphorylated by casein kinase II, but not at all by casein kinase I.  相似文献   

15.
We have attempted to purify endogenous substrate proteins for casein kinases I and II from the cytosol of AH-66 hepatoma cells. Utilizing the fact that only a few substrates are concentrated in the fraction eluted from DEAE-cellulose between 0.3 and 0.6 M NaCl, two substrates were purified from this fraction by DEAE-cellulose chromatography, hydroxyapatite chromatography, and HPLC on a DEAE-5PW column. The purified substrate proteins had molecular masses of 30.5 kDa and 31 kDa. The 31-kDa protein substrate was markedly phosphorylated by casein kinase II, but only slightly by casein kinase I. The radioactive phosphate incorporated into 31-kDa substrate by casein kinase II was 0.2 mol/mol of the protein and phosphorylation occurred on both threonine and serine residues. The 30.5 kDa protein was only slightly phosphorylated by casein kinase II, but not at all by casein kinase I.  相似文献   

16.
Mdm2 is a cellular oncoprotein the most obvious function of which is the down-regulation of the growth suppressor protein p53. It represents a highly phosphorylated protein but only little is yet known about the sites phosphorylated in vivo, the kinases that are responsible for the phosphorylation or the functional relevance of the phosphorylation status. Recently, we have shown that mdm2 is a good substrate for protein kinase CK2 at least in vitro. Computer analysis of the primary amino acid sequence of mdm2 revealed 19 putative CK2 phosphorylation sites. By using deletion mutants of mdm2 and a peptide library we identified the serine residue at position 269 which lies within a canonical CK2 consensus sequence (EGQELSDEDDE) as the most important CK2 phosphorylation site. Moreover, by using the mdm2 S269A mutant for in vitro phosphorylation assays this site was shown to be phosphorylated by CK2. Binding studies revealed that phosphorylation of mdm2 at S269 does not have any influence on the binding of p53 to mdm2.  相似文献   

17.
Regulation of the specific DNA binding function of p53.   总被引:95,自引:0,他引:95  
T R Hupp  D W Meek  C A Midgley  D P Lane 《Cell》1992,71(5):875-886
The DNA binding activity of p53 is required for its tumor suppressor function; we show here that this activity is cryptic but can be activated by cellular factors acting on a C-terminal regulatory domain of p53. A gel mobility shift assay demonstrated that recombinant wild-type human p53 binds DNA sequence specifically only weakly, but a monoclonal antibody binding near the C terminus activated the cryptic DNA binding activity stoichiometrically. p53 DNA binding could be activated by a C-terminal deletion of p53, mild proteolysis of full-length p53, E. coli dnaK (which disrupts protein-protein complexes), or casein kinase II (and coincident phosphorylation of a C-terminal site on p53). Activation of p53 DNA binding may be critical in regulation of its ability to arrest cell growth and thus its tumor suppressor function.  相似文献   

18.
The Drosophila homolog of cAMP-response element-binding protein (CREB), dCREB2, exists with serine 231, equivalent to mammalian serine 133, in a predominantly phosphorylated state. Thus, unlike the mammalian protein, the primary regulation of dCREB2 may occur at a different step from serine 231 phosphorylation. Although bacterially expressed dCREB2 bound cAMP-response element sites, protein from Drosophila extracts was unable to do so unless treated with phosphatase. Phosphorylation of recombinant protein by casein kinase (CK) I or II, but not calcium-calmodulin kinase II or protein kinase A, inhibited DNA binding. Up to four conserved CK sites likely to be phosphorylated in vivo were responsible for this effect, and these sites were phosphorylated by a kinase present in Drosophila cell extracts that biochemically resembles CKII. We propose that the relative importance of different signaling pathways in regulating CREB activity may differ between Drosophila and mammals. In Drosophila, the dephosphorylation of CK sites appears to be the major regulatory step, while phosphorylation of serine 231 is necessary but secondary.  相似文献   

19.
《FEBS letters》1997,403(3):313-317
Proteasomes function mainly in the ATP-dependent degradation of proteins that have been conjugated with ubiquitin. To demonstrate the phosphorylation of proteasomes in plants, we conducted an enzymatic dephosphorylation experiment with a crude extract of rice cultured cells. The results indicated that the C2 subunit of the 20S proteasome is phosphorylated in vivo in cultured cells. An in-gel kinase assay and analysis of phosphoamino acids revealed that the C2 subunit is phosphorylated by a 40-kDa serine/threonine protein kinase, the activity of which is inhibited by heparin, a specific inhibitor of casein kinase II. The catalytic subunit of casein kinase II from Arabidopsis was also able to phosphorylate the C2 subunit. These results suggest that the C2 subunit in rice is probably phosphorylated by casein kinase II. Our demonstration of the phosphorylation of proteasomes in plants suggests that phosphorylation might be involved in the general regulation of the functions of proteasomes.© 1997 Federation of European Biochemical Societies.  相似文献   

20.
The p53 tumor suppressor protein is stabilized in response to ionizing radiation and accumulates in the nucleus. Stabilization is thought to involve disruption of the interaction between the p53 protein and Mdm2, which targets p53 for degradation. Here we show that the direct association between a p53 N-terminal peptide and Mdm2 is disrupted by phosphorylation of the peptide on Thr(18) but not by phosphorylation at other N-terminal sites, including Ser(15) and Ser(37). Thr(18) was phosphorylated in vitro by casein kinase (CK1); this process required the prior phosphorylation of Ser(15). Thr(18) was phosphorylated in vivo in response to DNA damage, and such phosphorylation required Ser(15). Our results suggest that stabilization of p53 after ionizing radiation may result, in part, from an inhibition of Mdm2 binding through a phosphorylation-phosphorylation cascade involving DNA damage-activated phosphorylation of p53 Ser(15) followed by phosphorylation of Thr(18).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号