首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Abrupt range limits of parapatric species may serve as a model system to understand the factors that determine species’ range borders. Theory suggests that parapatric range limits can be caused by abiotic conditions along environmental gradients, biotic interactions or a combination of both. Geographic ranges of the parapatric salamanders, Salamandra salamandra and S. atra, meet in small contact zones in the European Alps and to date, the cause of parapatry and the restricted range of S. atra remain elusive. We combine multivariate approaches and climatic data analysis to explore niche differentiation among the two salamanders with respect to the available climatic environment at their contact zones. Our purpose is to evaluate whether climatic conditions explain the species’ sharp range limits or if biotic interactions may play a role for range delimitation. Analyses were carried out in three contact zones in Switzerland to assess possible geographic variation. Our results indicate that both species occur at localities with different climatic conditions as well as the presence of a strong climatic gradient across the species’ range limits. Although the species’ climatic niches differ moderately (with a wider niche breadth for S. atra), interspecific niche overlap is found. Comparisons among the contact zones confirm geographic variation in the species’ climatic niches as well as in the conditions within the geographically available space. Our results suggest that the change in climatic conditions along the recognized gradient represents a determining factor for species’ range limits within contact zones. However, our analyses of geographic variation in climatic conditions reveal that both salamander species can occur in a much wider range of conditions than observed within contact zones. This finding and the interspecific climatic niche overlap within each contact zone provides indirect evidence that biotic interactions (likely competition) between the two species may also determine their range limits.  相似文献   

2.
Plethodon shermani comprises a series of geographically disjunct populations occupying high-elevation mountain isolates. These populations hybridize at their borders with salamanders of the Plethodon glutinosus species complex, and past range expansions inferred from Pleistocene climatic cycles may have increased the possible genetic interactions between P. shermani and species of the P. glutinosus complex. Because mitochondrial DNA haplotypes often show introgression across species borders, we survey mtDNA variation for evidence of past and ongoing genetic interactions between P. shermani, its close relative Plethodon cheoah, and species of the P. glutinosus complex. Ongoing hybridization with the P. glutinosus-complex species Plethodon teyahalee is accompanied by extensive mitochondrial introgression in some Unicoi populations of P. shermani, but it has little genetic impact on P. shermani populations outside hybrid zones at three other isolates (Tusquitee, Wayah Bald, Standing Indian). Some Unicoi populations of P. shermani exhibit mtDNA evidence of past hybridization with diverse lineages from P. aureolus and P. glutinosus. The Tusquitee isolate of P. shermani is also characterized by mtDNA haplotypes most closely related to Plethodon aureolus and P. glutinosus, presumably introduced by past genetic contact with these species or with introgressed populations of Unicoi P. shermani. The mtDNA variation in sampled populations of the Wayah Bald and Standing Indian isolates of P. shermani appears largely unaffected by ongoing hybridization. Principal components analyses of allozymic data indicate that P. shermani isolates collectively form a genetically homogeneous unit clearly demarcated from species with which they have had current or past genetic interactions. Rapid mtDNA introgression associated with transient contacts between P. shermani and other species permits a fine-level resolution of evolutionary lineages not evident from allozymic data.  相似文献   

3.
Landscape genetics has seen tremendous advances since its introduction, but parameterization and optimization of resistance surfaces still poses significant challenges. Despite increased availability and resolution of spatial data, few studies have integrated empirical data to directly represent ecological processes as genetic resistance surfaces. In our study, we determine the landscape and ecological factors affecting gene flow in the western slimy salamander (Plethodon albagula). We used field data to derive resistance surfaces representing salamander abundance and rate of water loss through combinations of canopy cover, topographic wetness, topographic position, solar exposure and distance from ravine. These ecologically explicit composite surfaces directly represent an ecological process or physiological limitation of our organism. Using generalized linear mixed‐effects models, we optimized resistance surfaces using a nonlinear optimization algorithm to minimize model AIC. We found clear support for the resistance surface representing the rate of water loss experienced by adult salamanders in the summer. Resistance was lowest at intermediate levels of water loss and higher when the rate of water loss was predicted to be low or high. This pattern may arise from the compensatory movement behaviour of salamanders through suboptimal habitat, but also reflects the physiological limitations of salamanders and their sensitivity to extreme environmental conditions. Our study demonstrates that composite representations of ecologically explicit processes can provide novel insight and can better explain genetic differentiation than ecologically implicit landscape resistance surfaces. Additionally, our study underscores the fact that spatial estimates of habitat suitability or abundance may not serve as adequate proxies for describing gene flow, as predicted abundance was a poor predictor of genetic differentiation.  相似文献   

4.
Montane regions can promote allopatric speciation and harbor unique species with small ranges. The southern Appalachians are a biodiversity hotspot for salamanders, and several montane endemics occur in the region. Here, we present the first DNA sequence data for Plethodon sherando, a terrestrial salamander recently discovered in the Blue Ridge Mountains of Virginia. We sequenced two mitochondrial regions (cyt-b and CO1) from salamanders at reference sites near the center of P. sherando’s range and from two contact zones where P. sherando populations are replaced by Plethodon cinereus, the Northern Red-Backed salamander. We then used these sequence data to examine divergence and hybridization between the two taxa. We found P. sherando and P. cinereus morphotypes from contact zones to be reciprocally monophyletic and highly divergent (~17%). P. sherando exhibited very low sequence diversity (π = 0.0010) as compared to P. cinereus from the same locations (π = 0.0096). Salamander morphology in the contact zone was as distinct as morphology at reference sites, and discriminant function analysis based on morphology successfully classified 98% of salamanders to their mitochondrial lineage. Phylogenetic analysis of cyt-b sequences showed P. sherando to be sister to Plethodon serratus (the Southern Red-Backed salamander) rather than P. cinereus or any nearby mountaintop endemics. Our results suggest that P. sherando is a distinct lineage that is not subject to substantial introgression from P. cinereus and that may have a history of geographic isolation. Given its limited range (<80 km2), we believe P. sherando should merit a conservation status similar to that of other mountaintop salamanders in the region.  相似文献   

5.
The sensitivity of amphibian species to shifts in environmental conditions has been exhibited through long-term population studies and the projection of ecological niche models under expected conditions. Species in biodiversity hotspots have been the focus of ample predictive modeling studies, while, despite their significant ecological value, wide-ranging and common taxa have received less attention. We focused on predicting range restriction of the spotted salamander (Ambystoma maculatum), blue-spotted salamander (A. laterale), four-toed salamander (Hemidactylium scutatum), and red-backed salamander (Plethodon cinereus) under future climate scenarios. Using bias-corrected future climate data and biodiversity database records, we developed maximum entropy (MaxEnt) models under current conditions and for climate change projections in 2050 and 2070. We calculated positivity rates of species localities to represent proportions of habitat expected to remain climatically suitable with continued climate change. Models projected under future conditions predicted average positivity rates of 91% (89–93%) for the blue-spotted salamander, 23% (2–41%) for the spotted salamander, 4% (0.7–9%) for the four-toed salamander, and 61% (42–76%) for the red-backed salamander. Range restriction increased with time and greenhouse gas concentration for the spotted salamander, four-toed salamander, and red-backed salamander. Common, widespread taxa that often receive less conservation resources than other species are at risk of experiencing significant losses to their climatic ranges as climate change continues. Efforts to maintain populations of species should be focused on regions expected to experience fewer climatic shifts such as the interior and northern zones of species' distributions.  相似文献   

6.
1. When studying speciation, researchers commonly examine reproductive isolation in recently diverged populations. Polymorphic species provide an opportunity to examine the role of reproductive isolation in populations that may be in the process of divergence. 2. We examined a polymorphic population of Plethodon cinereus (red-backed salamanders) for evidence of sympatric ecological separation by colour morphology. Recent studies have correlated temperature and climate with colour morphology in this species, but no studies have looked at differences in diet or mate choice between colour morphs. We used artificial cover objects to assess salamander diet, mating preference and surface activity over a 2-year period at a field site in north-eastern Ohio. 3. We detected differences in diet between two colour morphs, striped and unstriped. The diets of striped individuals were significantly more diverse and were made up of more profitable prey than the diets of unstriped salamanders. 4. Opposite sex pairs were made up of individuals of the same colour morph and striped males were found more often with larger females than were unstriped males. 5. We corroborate findings of earlier studies suggesting that the unstriped form is adapted to warmer conditions. Unstriped individuals were the first to withdraw from the forest floor as temperatures fell in the late fall. We found no evidence that the colour morphs responded differently to abiotic factors such as soil moisture and relative humidity, and responses to surface temperatures were also equivocal. 6. We conclude that the two colour morphs exhibit some degree of ecological separation and tend to mate assortatively, but are unlikely to be undergoing divergence given the observed frequency of intermorph pairings.  相似文献   

7.
Balancing timber production and conservation in forest management requires an understanding of how timber harvests affect wildlife species. Terrestrial salamanders are useful indicators of mature forest ecosystem health due to their importance to ecosystem processes and sensitivity to environmental change. However, the effects of timber harvests on salamanders, though often researched, are still not well understood. To further this understanding, we used artificial cover objects to monitor the relative abundance of terrestrial salamanders for two seasons (fall and spring) pre-harvest and five seasons post-harvest in six forest management treatments, and for three seasons post-harvest across the edge gradients of six recent clearcuts. In total, we recorded 19,048 encounters representing nine species of salamanders. We observed declines in mean encounters of eastern red-backed salamanders (Plethodon cinereus) and northern slimy salamanders (P. glutinosus) from pre- to post-harvest in group selection cuts and in clearcuts. However, we found no evidence of salamander declines at shelterwoods and forested sites adjacent to harvests. Edge effects induced by recent clearcuts influenced salamanders for approximately 20 m into the forest, but edge influence varied by slope orientation. Temperature, soil moisture, and canopy cover were all correlated with salamander counts. Our results suggest silvicultural techniques that remove the forest canopy negatively affect salamander relative abundance on the local scale during the years immediately following harvest, and that the depth of edge influence of clearcuts on terrestrial salamanders is relatively shallow (<20 m). Small harvests (<4 ha) and techniques that leave the forest canopy intact may be compatible with maintaining terrestrial salamander populations across a forested landscape. Our results demonstrate the importance of examining species-specific responses and monitoring salamanders across multiple seasons and years. Long-term monitoring will be necessary to understand the full impacts of forest management on terrestrial salamanders.  相似文献   

8.
Many patterns observed in ecology, such as species richness, life history variation, habitat use, and distribution, have physiological underpinnings. For many ectothermic organisms, temperature relationships shape these patterns, but for terrestrial amphibians, water balance may supersede temperature as the most critical physiologically limiting factor. Many amphibian species have little resistance to water loss, which restricts them to moist microhabitats, and may significantly affect foraging, dispersal, and courtship. Using plaster models as surrogates for terrestrial plethodontid salamanders (Plethodon albagula), we measured water loss under ecologically relevant field conditions to estimate the duration of surface activity time across the landscape. Surface activity time was significantly affected by topography, solar exposure, canopy cover, maximum air temperature, and time since rain. Spatially, surface activity times were highest in ravine habitats and lowest on ridges. Surface activity time was a significant predictor of salamander abundance, as well as a predictor of successful recruitment; the probability of a juvenile salamander occupying an area with high surface activity time was two times greater than an area with limited predicted surface activity. Our results suggest that survival, recruitment, or both are demographic processes that are affected by water loss and the ability of salamanders to be surface-active. Results from our study extend our understanding of plethodontid salamander ecology, emphasize the limitations imposed by their unique physiology, and highlight the importance of water loss to spatial population dynamics. These findings are timely for understanding the effects that fluctuating temperature and moisture conditions predicted for future climates will have on plethodontid salamanders.  相似文献   

9.
Disentangling the relative influence of the environment and biotic interactions in determining species coexistence patterns is a major challenge in ecology. The zonation occurring along elevation gradients, or at bioclimatic contact zones, offers a good opportunity to improve such understanding because the small scale at which the partitioning occurs facilitates inference based on experiments and ecological modelling. We studied the influence of abiotic gradients, habitat types, and interspecific competition in determining the spatial turnover between two pipit and two bunting species in NW Spain. We explored two independent lines of evidence to draw inference about the relative importance of environment and biotic interactions in driving range partitioning along elevation, latitude, and longitude. We combined occurrence data with environmental data to develop joint species distribution models (JSDM), in order to attribute co‐occurrence (or exclusion) to shared (or divergent) environmental responses and to interactions (attraction or exclusion). In the same region, we tested for interference competition by means of playback experiments in the contact zone. The JSDMs highlighted different responses for the two species pairs, although we did not find direct evidence of interspecific aggressiveness in our playback experiments. In pipits, partitioning was explained by divergent climate and habitat requirements and also by the negative correlations between species not explained by the environment. This significant residual correlation may reflect forms of competition others than direct interference, although we could not completely exclude the influence of unmeasured environmental predictors. When bunting species co‐occurred, it was because of shared habitat preferences, and a possible limitation to dispersal might cause their partitioning. Our results indicate that no single mechanism dominates in driving the distribution of our study species, but rather distributions are determined by the combination of many small forces including biotic and abiotic determinants of niche, whose relative strengths varied among species.  相似文献   

10.
1. Stream salamanders and fish often co‐occur even though fish prey on and outcompete salamanders. However, the mechanisms that allow palatable salamanders to coexist with fish are unknown. 2. We tested mechanisms in the field that promote coexistence between Idaho giant salamanders (Dicamptodon aterrimus) and stream salmonid fishes in headwater streams. Previous research in this system indicated that salamander dispersal did not promote coexistence with fish. We tested the hypothesis that D. aterrimus shift their diet when they occur with fish, facilitating coexistence through local niche partitioning. 3. We used nitrogen and carbon stable isotopes to describe the trophic niche of D. aterrimus and fish in three co‐occurring populations of salamanders and fish and three populations of salamanders without fish. We used two approaches to quantify trophic niche partitioning with stable isotopes: 95% kernel density estimators and isotopic mixing models. 4. We found that salamanders and fish were generalists that consumed aquatic invertebrates primarily, but both species were also cannibalistic and predatory on one another. We also found no support for trophic niche partitioning as a coexistence mechanism because there were no differences in the trophic niche metrics among salamander populations with and without fish. 5. Although we did not identify mechanisms that facilitate salamander and fish coexistence, our empirical data and use of novel approaches to describe the trophic niche did yield important insights on the role of predator–prey interactions and cannibalism as alternative coexistence mechanisms. In addition, we found that 95% kernel estimators are a simple and robust method to describe population‐level measure of trophic structure.  相似文献   

11.
Understanding the ecological processes that govern species'' range margins is a fundamental question in ecology with practical implications in conservation biology. The center‐periphery hypothesis predicts that organisms have higher abundance at the center of their geographic range. However, most tests of this hypothesis often used raster data, assuming that climatic conditions are consistent across one square km. This assumption is not always justified, particularly for mountainous species for which climatic conditions can vary widely across a small spatial scale. Previous studies rarely evenly sample occurrence data across the species'' distribution. In this study, we sampled an endemic perennial herb, Thunbergia atacorensis (Acanthanceae), throughout its range in West Africa using 54 plots and collected data on (a)biotic variables, the species density, leaf mass per area, and basal diameter. We built a structural equation model to test the direct and indirect effects of distance from geographic and climatic niche centers, and altitude on Thunbergia density as mediated by abiotic and biotic factors, population demographic structure, and individual size. Contrary to the prediction of the center‐periphery hypothesis, we found no significant effect of distance from geographic or climatic niche centers on plant density. This indicates that even the climatic center does not necessarily have optimal ecological conditions. In contrast, plant density varied with altitudinal gradient, but this was mediated by the effect of soil nitrogen and potassium which had positive effect on plant size. Surprisingly, we found no direct or mediating effect of interspecific competition on plant density. Altogether, our results highlight the role of geography, climatic, and ecological mismatch in predicting species distribution. Our study highlights that where altitudinal gradient is strong local‐scale heterogeneity in abiotic factors can play important role in shaping species range limits.  相似文献   

12.
The relative importance of ecological vs. nonecological factors for the origin and maintenance of species is an open question in evolutionary biology. Young lineages – such as the distinct genetic groups that make up the ranges of many northern species – represent an opportunity to study the importance of ecological divergence during the early stages of diversification. Yet, few studies have examined the extent of niche divergence between lineages in previously glaciated regions and the role of ecology in maintaining the contact zones between them. In this study, we used tests of niche overlap in combination with ecological niche models to explore the extent of niche divergence between lineages of the long‐toed salamander (Ambystoma macrodactylum Baird) species complex and to determine whether contact zones correspond to (divergent) niche limits. We found limited evidence for niche divergence between the different long‐toed salamander lineages, substantial overlap in the predicted distribution of suitable climatic space for all lineages and range limits that are independent of niche limits. These results raise questions as to the importance of ecological divergence to the development of this widespread species complex and highlight the potential for non‐ecological factors to play a more important role in the maintenance of northern taxa.  相似文献   

13.
A frequent assumption in ecology is that biotic interactions are more important than abiotic factors in determining lower elevational range limits (i.e., the “warm edge” of a species distribution). However, for species with narrow environmental tolerances, theory suggests the presence of a strong environmental gradient can lead to persistence, even in the presence of competition. The relative importance of biotic and abiotic factors is rarely considered together, although understanding when one exerts a dominant influence on controlling range limits may be crucial to predicting extinction risk under future climate conditions. We sampled multiple transects spanning the elevational range limit of Plethodon shenandoah and site and climate covariates were recorded. A two‐species conditional occupancy model, accommodating heterogeneity in detection probability, was used to relate variation in occupancy with environmental and habitat conditions. Regional climate data were combined with datalogger observations to estimate the cloud base heights and to project future climate change impacts on cloud elevations across the survey area. By simultaneously accounting for species’ interactions and habitat variables, we find that elevation, not competition, is strongly correlated with the lower elevation range boundary, which had been presumed to be restricted mainly as a result of competitive interactions with a congener. Because the lower elevational range limit is sensitive to climate variables, projected climate change across its high‐elevation habitats will directly affect the species’ distribution. Testing assumptions of factors that set species range limits should use models which accommodate detection biases.  相似文献   

14.
The ‘central‐peripheral’ hypothesis has provided a baseline for many studies of population dynamics and genetic variability at species distribution limits. Although peripheral populations are often assumed to occur in ecologically marginal conditions, little is known about whether they effectively occur in a distinct ecological niche. A cross‐taxa analysis of 11 Mediterranean vascular plants were studied. We quantified variation in the ecological niche between populations at the northern range limits of species in Mediterranean France and those in the central part of the distribution in continental Spain or Italy in 2013–2014. We analyzed both the macro‐ecological niche where populations occur in terms of broad habitat and altitudinal range and the micro‐ecological niche where individual plants grow in terms of soil and structural biotic and abiotic characteristics. Most species occur in a single broad habitat type common to central and peripheral populations and have a narrower altitudinal range in the latter. In contrast, for the micro‐ecological niche we detected marked variation in several niche parameters among central and peripheral populations. Although many differences are species‐specific some are common to several species. We found a trend towards narrower micro‐niche breadth in peripheral populations. Our results illustrate the importance of studying the precise ecological characteristics where plants grow and the pertinence of a multi‐species approach to correctly assess niche variation. The ecological originality of peripheral populations underlines their evolutionary potential and conservation significance.  相似文献   

15.
Adaptive radiations have served as model systems for quantifying the build-up of species richness. Few studies have quantified the tempo of diversification in species-rich clades that contain negligible adaptive disparity, making the macroevolutionary consequences of different modes of evolutionary radiation difficult to assess. We use mitochondrial-DNA sequence data and recently developed phylogenetic methodologies to explore the tempo of diversification of eastern North American Plethodon, a species-rich clade of woodland salamanders exhibiting only limited phenotypic disparity. Lineage-through-time analysis reveals a high rate of lineage accumulation, 0.8 species per million years, occurring 11-8 million years ago in the P. glutinosus species group, followed by decreasing rates. This high rate of lineage accumulation is exceptional, comparable to the most rapid of adaptive radiations. In contrast to classic models of adaptive radiation where ecological niche divergence is linked to the origin of species, we propose that phylogenetic niche conservatism contributes to the rapid accumulation of P. glutinosus-group lineages by promoting vicariant isolation and multiplication of species across a spatially and temporally fluctuating environment. These closely related and ecologically similar lineages persist through long-periods of evolutionary time and form strong barriers to the geographic spread of their neighbours, producing a subsequent decline in lineage accumulation. Rapid diversification among lineages exhibiting long-term maintenance of their bioclimatic niche requirements is an under-appreciated phenomenon driving the build-up of species richness.  相似文献   

16.
1. The competitive interactions of closely related species have long been considered important determinants of community composition and a major cause of phenotypic diversification. However, while patterns such as character displacement are well documented, less is known about how local adaptation influences diversifying selection from interspecific competition. 2. We examined body size and head shape variation among allopatric and sympatric populations of two salamander species, the widespread Plethodon cinereus and the geographically restricted P. nettingi. We quantified morphology from 724 individuals from 20 geographical localities throughout the range of P. nettingi. 3. Plethodon nettingi was more robust in cranial morphology relative to P. cinereus, and sympatric localities were more robust relative to allopatric localities. Additionally, there was significantly greater sympatric head shape divergence between species relative to allopatric communities, and sympatric localities of P. cinereus exhibited greater morphological variation than sympatric P. nettingi. 4. The sympatric morphological divergence and increase in cranial robustness of one species (P. nettingi) were similar to observations in other Plethodon communities, and were consistent with the hypothesis of interspecific competition. These findings suggest that interspecific competition in Plethodon may play an important role in phenotypic diversification in this group. 5. The increase in among-population variance in sympatric P. cinereus suggests a species-specific response to divergent natural selection that is influenced in part by other factors. We hypothesize that enhanced morphological flexibility and ecological tolerance allow P. cinereus to more rapidly adapt to local environmental conditions, and initial differences among populations have allowed the evolutionary response of P. cinereus to vary across replicate sympatric locations, resulting in distinct evolutionary trajectories of morphological change.  相似文献   

17.
In this paper, I review the relevance of the niche to biogeography, and what biogeography may tell us about the niche. The niche is defined as the combination of abiotic and biotic conditions where a species can persist. I argue that most biogeographic patterns are created by niche differences over space, and that even ‘geographic barriers’ must have an ecological basis. However, we know little about specific ecological factors underlying most biogeographic patterns. Some evidence supports the importance of abiotic factors, whereas few examples exist of large-scale patterns created by biotic interactions. I also show how incorporating biogeography may offer new perspectives on resource-related niches and species interactions. Several examples demonstrate that even after a major evolutionary radiation within a region, the region can still be invaded by ecologically similar species from another clade, countering the long-standing idea that communities and regions are generally ‘saturated’ with species. I also describe the somewhat paradoxical situation where competition seems to limit trait evolution in a group, but does not prevent co-occurrence of species with similar values for that trait (called here the ‘competition–divergence–co-occurrence conundrum’). In general, the interface of biogeography and ecology could be a major area for research in both fields.  相似文献   

18.
Populations are often found on different habitats at different geographic locations. This habitat shift may be due to biased dispersal, physiological tolerances or biotic interactions. To explore how fitness of the native plant Chamaecrista fasciculata depends on habitat within, at and beyond its range edge, we planted seeds from five populations in two soil substrates at these geographic locations. We found that with reduced competition, lifetime fitness was always greater or equivalent in one habitat type, loam soils, though early-season survival was greater on sand soils. At the range edge, natural populations are typically found on sand soil habitats, which are also less competitive environments. Early-season survival and fitness differed among source populations, and when transplanted beyond the range edge, range edge populations had greater fitness than interior populations. Our results indicate that even when the optimal soil substrate for a species does not change with geographic range location, the realized niche of a species may be restricted to sub-optimal habitats at the range edge because of the combined effects of differences in abiotic and biotic effects (e.g. competitors) between substrates.  相似文献   

19.
A combination of abiotic and biotic factors probably restricts the range of many species. Recent evolutionary models and tests of those models have asked how a gradual change in environmental conditions can set the range limit, with a prominent idea being that gene flow disrupts local adaptation. We investigate how biotic factors, explicitly competition for limited resources, result in evolutionarily stable range limits even in the absence of the disruptive effect of gene flow. We model two competing species occupying different segments of the resource spectrum. If one segment of the resource spectrum declines across space, a species that specializes on that segment can be driven to extinction, even though in the absence of competition it would evolve to exploit other abundant resources and so be saved. The result is that a species range limit is set in both evolutionary and ecological time, as the resources associated with its niche decline. Factors promoting this outcome include: (i) inherent gaps in the resource distribution, (ii) relatively high fitness of the species when in its own niche, and low fitness in the alternative niche, even when resource abundances are similar in each niche, (iii) strong interspecific competition, and (iv) asymmetric interspecific competition. We suggest that these features are likely to be common in multispecies communities, thereby setting evolutionarily stable range limits.  相似文献   

20.
BACKGROUND AND AIMS: Polyploidy is viewed as an important mechanism of sympatric speciation, but only a few studies have documented patterns of distribution and ecology of different cytotypes in their contact zone. Aster amellus agg. (Asteraceae) is one of the species with documented multiple ploidy levels. The aim of this study was to determine spatial distribution and ecology of two cytotypes, diploid (2n = 18) and hexaploid (2n = 54), of Aster amellus agg. at their contact zone in the Czech Republic. METHODS: Root-tip squashes and flow cytometry were used to determine the ploidy of 2175 individuals from 87 populations. To test whether some differences in ecology between the two ploidy levels exist, in each locality relevés were recorded and abiotic conditions of the sites were studied by estimating potential direct solar radiation, Ellenberg indicator values and above-ground biomass. KEY RESULTS: Together with diploid and hexaploids, minorite cytotypes (triploid, pentaploid and nonaploid) were found. No significant ecological differences between diploid and hexaploid cytotypes were found. In spite of this, no population consisting of both of the two basic cytotypes was found. CONCLUSIONS: The results of this study show that the contact zone of diploid and hexaploid cytotypes in the Czech Republic is much more diffuse than indicated in previous records. Although populations of both cytotypes occur in close proximity (the closest populations of different cytotypes were 500 m apart), each individual population consists of only one basic ploidy level. This was unexpected since there are no clear differences in abiotic conditions between populations. Taken together with the absence of an intermediate tetraploid cytotype and with reference to published world distributional patterns of different ploidy levels, this suggests a secondary contact zone. Detailed genetic study is, however, necessary to confirm this.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号