首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim  To evaluate rigorously an influential palaeobiogeographical hypothesis which states that in the Late Cretaceous (until c. 80 Ma) the Kerguelen Plateau provided a terrestrial causeway between East Antarctica and India that, in turn, formed part of a longer overland route between South America and Madagascar.
Location  Southern Ocean, Indian Ocean, East Antarctica, India and Madagascar.
Methods  Palaeogeographical modelling drawing on geological and geophysical data, bathymetric charts and plate tectonic reconstructions.
Results  During the Late Cretaceous, only small portions of the present-day Kerguelen Plateau were sub-aerial. Additionally, the plateau's north-north-west and south-south-east ends did not directly abut India and Antarctica, but instead were separated by large gaps. Thus, the notion that the two continents were then linked by a land route running the entire length of the edifice is almost certainly incorrect.
Main conclusions  The currently available physical evidence indicates that the Late Cretaceous southern-continent connection hypothesis, which is based exclusively on biological data, is untenable. Assuming the fossil and/or extant biological records of Madagascar–India are closely related to those of South America, alternative palaeogeographical scenarios need to be explored to explain this conundrum. Overwater dispersal and/or an alternative passage involving a more direct route via Africa (with crossings of the Mozambique Channel and a then appreciably narrower Central Atlantic) should be considered.  相似文献   

2.
Madagascar and the Seychelles are Gondwanan remnants currently isolated in the Indian Ocean. In the Late Cretaceous, these islands were joined with India to form the Indigascar landmass, which itself then split into its three component parts around the start of the Tertiary. This history is reflected in the biota of the Seychelles, which appears to contain examples of both vicariance- and dispersal-mediated divergence from Malagasy or Indian sister taxa. One lineage for which this has been assumed but never thoroughly tested is the Seychellean tiger chameleon, a species assigned to the otherwise Madagascar-endemic genus Calumma. We present a multi-locus phylogenetic study of chameleons, and find that the Seychellean species is actually the sister taxon of a southern African clade and requires accomodation in its own genus as Archaius tigris. Divergence dating and biogeographic analyses indicate an origin by transoceanic dispersal from Africa to the Seychelles in the Eocene–Oligocene, providing, to our knowledge, the first such well-documented example and supporting novel palaeocurrent reconstructions.  相似文献   

3.
Rowson, B., Tattersfield, P. & Symondson, W. O. C. (2010). Phylogeny and biogeography of tropical carnivorous land‐snails (Pulmonata: Streptaxoidea) with particular reference to East Africa and the Indian Ocean. —Zoologica Scripta, 40, 85–98. A phylogeny is presented for the speciose, near pan‐tropical, carnivorous achatinoid land‐snail superfamily Streptaxoidea inferred from DNA sequences (two nuclear and two mitochondrial regions) from 114 taxa from Africa, the Indian Ocean, Asia, South America and Europe. In all analyses, Streptaxidae are monophyletic, while the (two to six) previously recognised subfamilies are polyphyletic, as are several genus‐level taxa including the most speciose genus Gulella, necessitating major taxonomic review. The Asian Diapheridae are sister to Streptaxidae, which forms several well‐supported clades originating in a persistent basal polytomy. Divergence dating estimates, historical biogeography, and the fossil context suggest a Cretaceous origin of these families, but suggest Gondwanan vicariance predated most radiation. The basal polytomy dates to the Paleogene and may correspond to a rapid radiation in Africa. There is evidence for multiple Cenozoic dispersals followed by radiation, including at least two from Africa to South America, at least two from Africa to Asia and at least two from Africa to Madagascar, indicating Cenozoic turnover in tropical snail faunas. The endemic Seychelles and Mascarene streptaxid faunas each are composites of early Cenozoic lineages and more recent dispersals from Africa, with no direct evidence for an Asian origin as currently proposed. Peak streptaxid diversity in East Africa is explained by Neogene speciation among a large number of coexisting ancient lineages, a phenomenon most pronounced in the Eastern Arc‐Coastal Forests centre of endemism. This includes Miocene diversification in Gulella, a primarily East and South‐East African group which remains strikingly diverse even after unrelated ‘Gulella’ species are reclassified.  相似文献   

4.
Aim To evaluate the Gunnerus Ridge land‐bridge hypothesis, which postulates a Late Cretaceous causeway between eastern Antarctica and southern Madagascar allowing the passage of terrestrial vertebrates. Location Eastern Antarctica, southern Indian Ocean, Madagascar. Methods The review involves palaeogeographical modelling, which draws upon geological and geophysical data, bathymetric charts, and plate tectonic reconstructions, and the evaluation of stratigraphically calibrated phylogenetic analyses to document ghost lineages of select taxa. Results The available geological and geophysical evidence indicates that eastern Antarctica’s Gunnerus Ridge and southern Madagascar were separated for the entire Late Cretaceous by a vast marine expanse. In the mid–Late Cretaceous, the gap was probably punctuated by land on two intervening physiographical highs, the northern Madagascar Plateau and Conrad Rise, the latter of which, although probably large, was still separated from Antarctica’s Riiser‐Larsen Peninsula by c. 1600 km. Recent, stratigraphically calibrated phylogenies including large, terrestrial end‐Cretaceous vertebrate taxa of Madagascar and the Indian subcontinent reveal long ghost lineages that extended into the Early Cretaceous. Main conclusions The view that Antarctica and Madagascar were connected by a long causeway between the Gunnerus Ridge and southern Madagascar in the Late Cretaceous, and that terrestrial vertebrates were able to colonize new frontiers using this physiographical feature, is almost certainly incorrect, as was previously demonstrated for the purported causeway between Antarctica and the Indian subcontinent across the Kerguelen Plateau. Connection across mainland Africa to account for the close relationships of several fossil and extant vertebrate taxa of Indo‐Madagascar and South America is another option, although this too lacks credibility. We conclude that (1) throughout the Late Cretaceous there was no intervening, continuous causeway through Antarctica and associated land bridges between South America to the west and Indo‐Madagascar to the east; and (2) mid‐ to large‐sized, obligate terrestrial forms (e.g. abelisauroid theropod and titanosaurian sauropod dinosaurs and notosuchian crocodyliforms) gained broad distribution across Gondwanan land masses prior to fragmentation and were isolated on Indo‐Madagascar before the end of the Early Cretaceous.  相似文献   

5.
Aim To describe the phylogeographic patterns of the black rat, Rattus rattus, from islands in the western Indian Ocean where the species has been introduced (Madagascar and the neighbouring islands of Réunion, Mayotte and Grande Comore), in comparison with the postulated source area (India). Location Western Indian Ocean: India, Arabian Peninsula, East Africa and the islands of Madagascar, Réunion, Grande Comore and Mayotte. Methods Mitochondrial DNA (cytochrome b, tRNA and D‐loop, 1762 bp) was sequenced for 71 individuals from 11 countries in the western Indian Ocean. A partial D‐loop (419 bp) was also sequenced for eight populations from Madagascar (97 individuals), which were analysed in addition to six previously published populations from southern Madagascar. Results Haplotypes from India and the Arabian Peninsula occupied a basal position in the phylogenetic tree, whereas those from islands were distributed in different monophyletic clusters: Madagascar grouped with Mayotte, while Réunion and Grand Comore were present in two other separate groups. The only exception was one individual from Madagascar (out of 190) carrying a haplotype that clustered with those from Réunion and South Africa. ‘Isolation with migration’ simulations favoured a model with no recurrent migration between Oman and Madagascar. Mismatch distribution analyses dated the expansion of Malagasy populations on a time‐scale compatible with human colonization history. Higher haplotype diversity and older expansion times were found on the east coast of Madagascar compared with the central highlands. Main conclusions Phylogeographic patterns supported the hypothesis of human‐mediated colonization of R. rattus from source populations in either the native area (India) or anciently colonized regions (the Arabian Peninsula) to islands of the western Indian Ocean. Despite their proximity, each island has a distinct colonization history. Independent colonization events may have occurred simultaneously in Madagascar and Grande Comore, whereas Mayotte would have been colonized from Madagascar. Réunion was colonized independently, presumably from Europe. Malagasy populations may have originated from a single successful colonization event, followed by rapid expansion, first in coastal zones and then in the central highlands. The congruence of the observed phylogeographic pattern with human colonization events and pathways supports the potential relevance of the black rat in tracing human history.  相似文献   

6.
Today, the only surviving wild population of giant tortoises in the Indian Ocean occurs on the island of Aldabra. However, giant tortoises once inhabited islands throughout the western Indian Ocean. Madagascar, Africa, and India have all been suggested as possible sources of colonization for these islands. To address the origin of Indian Ocean tortoises (Dipsochelys, formerly Geochelone gigantea), we sequenced the 12S, 16S, and cyt b genes of the mitochondrial DNA. Our phylogenetic analysis shows Dipsochelys to be embedded within the Malagasy lineage, providing evidence that Indian Ocean giant tortoises are derived from a common Malagasy ancestor. This result points to Madagascar as the source of colonization for western Indian Ocean islands by giant tortoises. Tortoises are known to survive long oceanic voyages by floating with ocean currents, and thus, currents flowing northward towards the Aldabra archipelago from the east coast of Madagascar would have provided means for the colonization of western Indian Ocean islands. Additionally, we found an accelerated rate of sequence evolution in the two Malagasy Pyxis species examined. This finding supports previous theories that shorter generation time and smaller body size are related to an increase in mitochondrial DNA substitution rate in vertebrates.  相似文献   

7.
Aim In Madagascar the family Rubiaceae includes an estimated 650 species representing 95 genera. As many as 98% of the species and 30% of the genera are endemic. Several factors make the Rubiaceae a model system for developing an understanding of the origins of the Malagasy flora. Ancestral area distributions are explicitly reconstructed for four tribes (Knoxieae, Naucleeae, Paederieae and Vanguerieae) with the aim of understanding how many times, and from where, these groups have originated in Madagascar. Location Indian Ocean Basin, with a focus on Madagascar. Methods Bayesian phylogenetic analyses are conducted on the four tribes. The results are used for reconstructing ancestral areas using dispersal–vicariance analyses. Phylogenetic uncertainties in the reconstructions are accounted for by conducting all analyses on the posterior distribution from the analyses. Results Altogether, 11 arrivals in Madagascar (one in Paederieae, five in Knoxieae, three in Vanguerieae, and two in Naucleeae) are reconstructed. The most common pattern is a dispersal event (followed by vicariance) from Eastern Tropical Africa. The Naucleeae and Paederieae in Madagascar differ and originate from Asia. Numerous out‐of‐Madagascar dispersals, mainly in the dioecious Vanguerieae, are reconstructed. Main conclusions The four tribes arrived several times in Madagascar via dispersal events from Eastern Tropical Africa, Southern Africa and Tropical Asia. The presence of monophyletic groups that include a number of species only found in Madagascar indicates that much endemism in the tribes results from speciation events occurring well after their arrival in Madagascar. Madagascar is the source of origin for almost all Rubiaceae found on the neighbouring islands of the Comoros, Mascarenes and Seychelles.  相似文献   

8.
The Platypleurini is a large group of charismatic cicadas distributed from Cape Agulhas in South Africa, through tropical Africa, Madagascar, India and eastern Asia to Japan, with generic diversity concentrated in equatorial and southern Africa. This distribution suggests the possibility of a Gondwanan origin and dispersal to eastern Asia from Africa or India. We used a four‐gene (three mitochondrial) molecular dataset, fossil calibrations and molecular clock information to explore the phylogenetic relationships of the platypleurine cicadas and the timing and geography of their diversification. The earliest splits in the tribe were found to separate forest genera in Madagascar and equatorial Africa from the main radiation, and all of the Asian/Indian species sampled formed a younger clade nested well within the African taxa. The tribe appears to have diversified during the Cenozoic, beginning c. 50–32 Ma, with most extant African lineages originating in the Miocene or later, well after the breakup of the Gondwanan landmass. Biogeographical analysis suggests an African origin for the tribe and a single dispersal event founding the Asian platypleurines, although additional taxon sampling and genetic data will be needed to confirm this pattern because key nodes in the tree are still weakly supported. Two Platypleurini genera from Madagascar (Pycna Amyot & Audinet‐Serville, Yanga Distant) are found to have originated by late Miocene dispersal of a single lineage from Africa. The genus Platypleura is recovered as polyphyletic, with Platypleura signifera Walker from South Africa and many Asian/Indian species apparently requiring assignment to different genera, and a new Platypleura concept is proposed with the synonymization of Azanicada Villet syn.n. The genera Orapa Distant and Hamza Distant, currently listed within separate tribes but suspected of platypleurine affinity, are nested deeply within the Platypleurini radiation. The tribe Orapini syn.n . is here synonymized while the tribe Hamzini is pending a decision of the ICZN to preserve nomenclatorial stability.  相似文献   

9.
In this paper we examine the evolutionary relationships of kestrels from mainland Africa, Indian Ocean islands and related areas. We construct a molecular phylogeny of African kestrels, using approximately 1.0 kb of mitochondrial cytochrome b sequence. Our molecular results support an Old World origin for typical kestrels and an ancient divergence of kestrels into the New World, and indicate a more recent radiation of kestrels from Africa via Madagascar towards Mauritius and the Seychelles. Phylogenetic placement of the Australian kestrel suggests a recent origin from African kestrel stock. We compare evolutionary relationships based on kestrel plumage pattern and morphology to our molecular results for the African and Indian Ocean kestrels, and reveal some consistency with the different island forms. We apply a range of published avian cytochrome b substitution rates to our data, as an alternative to internal calibration of a molecular clock arising from incomplete paleontological information. We align these divergence estimates to the geological history of Indian Ocean island formation inferred from potassium-argon dating methods. The arrival of kestrels on Mauritius appears consistent with the cessation of volcanic activity on Mauritius. The estimated time and route of divergence of the Seychelles kestrel from Madagascar may be compatible with the emergence of smaller islands during Pleistocene sea level fluctuations.  相似文献   

10.
Tollenaere et al. (Journal of Biogeography, 2010, 37 , 398–410) present a phylogeographic analysis of Rattus rattus for the Western Indian Ocean, with particular emphasis on Madagascar, but do not include samples from three island groups centrally located in the Mozambique Channel. Haplotypes from these islands provide additional information on the colonization pathways of R. rattus in the Western Indian Ocean region. For each of the three Îles Éparses groups in the Mozambique Channel, we test the competing hypotheses that colonization by R. rattus was most likely: (1) from the Arabian Peninsula, (2) from East Africa, (3) from Madagascar, or (4) from independent shipping. These results are combined with historical observations of the presence of R. rattus on these islands to give stronger inference on the colonization pathways. Additionally, more accurate colonization dates provide guidance for contemporary conservation management.  相似文献   

11.
Lactoridaceae are a monotypic family confined to Masatierra Island, Juan Fernández Archipelago, in the Pacific Ocean. It grows in the understorey of a subtropical montane rain forest. Lactoridaceae most probably originated in southern South Africa in the Cretaceous, with the oldest records in the Turonian–Campanian, and reached its widest palaeogeographical distribution by the Maastrichtian, extending into Australia, India, Antarctica, and North and South America. In this paper, we report a new fossil find of lactoridaceous tetrads from the early Miocene of eastern Patagonia, southern South America. This record is the youngest and geographically one of the closest to the extant Lactoris distribution area. Patagonian fossil material shows greater similarities to extant L. fernandeziana Phil. than to any other described morphotaxon. The family may have migrated into South America, either via Africa (through the Atlantic Ocean) or Antarctica, by the Maastrichtian, growing in eastern Patagonia up to the early Miocene. Arid conditions established in this region by the middle–late Miocene onwards would have determined the restriction of forests to the western lands. Lactoridaceae may have followed a similar migration pattern towards the Pacific coast of South America. The shifting of Lactoridaceae towards Masatierra Island would have occurred in the last 4 Myr by long‐distance dispersal events (perhaps by birds). © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 41–50.  相似文献   

12.
Geophysical maps depicting continental movement have consistently shown India, as it moved northward, to be located far out in the Tethys Sea. India split off from the African east coast about 148 m.y.a. From that time onward, according to almost all geophysical accounts, India was isolated from all of other continents until the early Miocene when it made contact with Eurasia. But the biological data, both fossil and Recent, indicate that this concept cannot be correct. If India had really existed as an isolated, oceanic continent for about 100 m.y., it should have developed a peculiar biota with many endemic genera and families in its terrestrial and shallow marine habitats. But there are virtually no remains of organisms indicating that India was isolated for any substantial time (millions of years). Instead, we find that almost all Indian taxa were possessed in common with other continents. As time went on, the northern relationships became stronger and the southern ones weaker. Most of the recent geophysical accounts show India not making contact with Eurasia until the early Miocene, but fossil materials show that this event must have taken place by the early Eocene. It has been postulated that, as India moved northward, it created a biogeographic barrier that separated marine fish populations and resulted in the east-west provinces that are now apparent in the Indian Ocean. At the same time, the barrier effect was supposed to have resulted in the formation of sister species that are now located far apart. Information currently available indicates that most living, tropical marine species are probably not over 3 m.y. old. Consequently, the northward movement of India, which took place primarily between 148 and 50 m.y.a., could have no bearing on the relationships of modern species.  相似文献   

13.
Molecular phylogenies of island organisms provide useful systems for testing hypotheses of convergent or parallel evolution, since selectively neutral molecular characters are likely to be independent of phenotype, and the existence of similar environments on multiple isolated islands provides numerous opportunities for populations to evolve independently under the same constraints. Here we construct a phylogenetic hypothesis for Hypsipetes bulbuls of the western Indian Ocean, and use this to test hypotheses of colonization pattern and phenotypic change among islands of the region. Mitochondrial sequence data were collected from all extant taxa of the region, combined with sequence data from relevant lineages in Asia. Data are consistent with a single Hypsipetes colonization of the western Indian Ocean from Asia within the last 2.6 Myr. The expansion of Hypsipetes appears to have occurred rapidly, with descendants found across the breadth of its western Indian Ocean range. The data suggest that a more recent expansion of Hypsipetes madagascariensis from Madagascar led to the colonization of Aldabra and a secondary colonization of the Comoros. Groupings of western Indian Ocean Hypsipetes according to phenotypic similarities do not correspond to mtDNA lineages, suggesting that these similarities have evolved by convergence or parallelism. The direction of phenotypic change cannot be inferred with confidence, since the primary expansion occurred rapidly relative to the rate of mtDNA substitution, and the colonization sequence remains uncertain. However, evidence from biogeography and comparison of independent colonization events are consistent with the persistence of a small grey continental bulbul in India and Madagascar, and multiple independent origins of large size and green plumage in insular island populations of the Comoros, Mascarenes and Seychelles. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 85 , 271–287.  相似文献   

14.
We constructed a phylogenetic hypothesis for western Indian Ocean sunbirds (Nectarinia) and used this to investigate the geographic pattern of their diversification among the islands of the Indian Ocean. A total of 1309 bp of mitochondrial sequence data was collected from the island sunbird taxa of the western Indian Ocean region, combined with sequence data from a selection of continental (African and Asian) sunbirds. Topological and branch length information combined with estimated divergence times are used to present hypotheses for the direction and sequence of colonization events in relation to the geological history of the Indian Ocean region. Indian Ocean sunbirds fall into two well-supported clades, consistent with two independent colonizations from Africa within the last 3.9 million years. The first clade contains island populations representing the species Nectarinia notata, while the second includes Nectarinia souimanga, Nectarinia humbloti, Nectarinia dussumieri, and Nectarinia coquereli. With respect to the latter clade, application of Bremer's [Syst. Biol. 41 (1992) 436] ancestral areas method permits us to posit the Comoros archipelago as the point of initial colonization in the Indian Ocean. The subsequent expansion of the souimanga clade across its Indian Ocean range occurred rapidly, with descendants of this early expansion remaining on the Comoros and granitic Seychelles. The data suggest that a more recent expansion from Anjouan in the Comoros group led to the colonization of Madagascar by sunbirds representing the souimanga clade. In concordance with the very young geological age of the Aldabra group, the sunbirds of this archipelago have diverged little from the Madagascar population; this is attributed to colonization of the Aldabra archipelago in recent times, in one or possibly two or more waves originating from Madagascar. The overall pattern of sunbird radiation across Indian Ocean islands indicates that these birds disperse across ocean barriers with relative ease, but that their subsequent evolutionary success probably depends on a variety of factors including prior island occupation by competing species.  相似文献   

15.
A corollary of island biogeographical theory is that islands are largely colonized from their nearest mainland source. Despite Madagascar’s extreme isolation from India and proximity to Africa, a high proportion of the biota of the Madagascar region has Asian affinities. This pattern has rarely been viewed as surprising, as it is consistent with Gondwanan vicariance. Molecular phylogenetic data provide strong support for such Asian affinities, but often not for their vicariant origin; most divergences between lineages in Asia and the Madagascar region post‐date the separation of India and Madagascar considerably (up to 87 Myr), implying a high frequency of dispersal that mirrors colonization of the Hawaiian archipelago in distance. Indian Ocean bathymetry and the magnitude of recent sea‐level lowstands support the repeated existence of sizeable islands across the western Indian Ocean, greatly reducing the isolation of Madagascar from Asia. We put forward predictions to test the role of this historical factor in the assembly of the regional biota. © The Willi Hennig Society 2009.  相似文献   

16.
Evolution of the Indian Ocean and the drift of India: A vicariant event   总被引:1,自引:1,他引:0  
The contemporary hypothesis of plate tectonics allows for the dismembering of a Mesozoic megacontinental land mass, Pangaea, into two supercontinents, Laurasia and Gondwana. Encompassing the current position of the Indo-West Pacific Oceans, the Tethys Ocean was circumglobal from the Jurassic to the Miocene and separated these two supercontinents. Fragmentation of Gondwana allowed for the northward track of India across the Tethys to collide with Asia, closing the Indo-Mediterranean-Atlanto seaway by early Miocene in conjunction with the suturing of Africa and Europe. It is hypothesized that the evolution of the Indian Ocean and the drift of the Indian Plate represent vicariant events which explain patterns of faunal endemism recognized in the region today.  相似文献   

17.
We examine the effects of ecological opportunity and geographic area on rates of species accumulation and morphological evolution following archipelago colonization in day geckos (genus Phelsuma) in the Indian Ocean. Using a newly generated molecular phylogeny for the genus, we present evidence that these geckos likely originated on Madagascar, whereas colonization of three archipelagos in the Indian Ocean, the Seychelles, Mascarene, and Comoros Islands has produced three independent monophyletic radiations. We find that rates of species accumulation are not elevated following colonization but are roughly equivalent on all three isolated archipelagos and on the larger island of Madagascar. However, rates of species accumulation have slowed through time on Madagascar. Rates of morphological evolution are higher in both the Mascarene and Seychelles archipelagos compared to rates on Madagascar. This negative relationship between rate of morphological evolution and island area suggests that ecological opportunity is an important factor in diversification of day gecko species.  相似文献   

18.
Eocene ocean currents and prevailing winds correlate with over-water dispersals of terrestrial mammals from Africa to Madagascar. Since the Early Miocene (about 23 Ma), these currents flowed in the reverse direction, from the Indian Ocean towards Africa. The Comoro Islands are equidistant between Africa and Madagascar and support an endemic land vertebrate fauna that shares recent ancestry predominantly with Madagascar. We examined whether gene flow in two Miniopterus bat species endemic to the Comoros and Madagascar correlates with the direction of current winds, using uni- and bi-parentally inherited markers with different evolutionary rates. Coalescence-based analyses of mitochondrial matrilines support a Pleistocene (approximately 180,000 years ago) colonization event from Madagascar west to the Comoros (distance: 300 km) in the predicted direction. However, nuclear microsatellites show that more recent gene flow is restricted to a few individuals flying against the wind, from Grande Comore to Anjouan (distance: 80 km).  相似文献   

19.
Inventory of the mosquitoes (Diptera: Culicidae) of the islands of southwestern Indian Ocean, Madagascar excluded – A Critical Review. The biodiversity of mosquitoes in the islands of southwestern Indian Ocean is the concern of numerous publications. Here, we propose a synthetic inventory and the analysis of the mosquito diversity, based on the available literature. A comprehensive annotated checklist of mosquito species has been recently published on Madagascar; this is the reason why this land is excluded from our work. Studied area encompasses 28 tropical islands in the southern hemisphere: 4 islands in the Comoros archipelago, 5 Scattered Islands (îles Éparses), 5 in Mascarene, 11 in the Seychelles and 3 in the Chagos archipelago. In total, the mosquito list presents 73 valid species, of which 10 are Anophelinae and 63 Culicinae. The number of species that are distributed in these islands only is 19, i.e. 26%, which is a remarkable level for endemism. The richness in mosquito species in these islands is analysed through several aspects including geography, local speciation and natural or human dissemination. This updated inventory increases by 33% the number of known species by regard to the previous inventory published by Julvez & Mouchet in 1994. The historical responsibility of humans in the introduction of new mosquito species in these islands is strongly documented. For instance, the species with the highest distribution among islands are Aedes aegypti, Ae. albopictus and Culex quinquefasciatus. The islands belong to the afrotropical biogeographic area and, logically, the majority (63%) of mosquito species present phylogenetic affinities with continental Africa and/or Madagascar; interestingly, the number of species present in these islands and in Madagascar but absent in continental Africa is higher than the number of species present in these islands and in continental Africa but absent in Madagascar (respectively 12 and 2 species). Thanks to valuable increase in the sampling effort, our knowledge of the culicidian fauna is increasing in these islands that constitute indisputably hotspots of biodiversity.  相似文献   

20.
I review new evidence on origins and adaptive radiation of Malagasy lemurs, a remarkably diverse group containing 13% of living primate species. The number of recognized lemur species has increased significantly, partly due to research revealing specific subdivisions within known populations but mainly because of discovery of new populations through fieldwork. Some species feared to be extinct have also been rediscovered. Specific numbers have increased particularly in small-bodied, cryptic genera for which continued research will surely reveal even more species.Adaptative radiation of lemurs has been essentially confined to Madagascar. The high density of lemur species on that island, associated with very small geographical ranges, has major implications both for their evolutionary divergence and for conservation. Reconstructions of phylogenetic relationships among primates have been considerably enhanced by DNA sequence data. Sufficient data are now available from both nuclear and mitochondrial sequences to examine relationships among and within the major groups of living primates. Most studies have confirmed that lemurs constitute a monophyletic sister-group of the lorisiform clade and all exclude a specific relationship between cheirogaleids and lorisiforms repeatedly inferred from morphological evidence. However, some analyses indicate that the aye-aye may have branched away before the divergence between other lemurs and lorisiforms. DNA sequence analyses have also yielded a broad consensus for relationships between Eulemur, Hapalemur, Lemur and Varecia: Varecia branched away first, while Lemur is more closely related to Hapalemur than to Eulemur. As debate about phylogenetic relationships among lemurs and other primates seems to have been settled in favor of lemur monophyly (possibly excluding the aye-aye), only a single invasion of Madagascar is required; but it must still be explained how ancestral lemurs could have migrated there at an appropriate time. Separation between Madagascar and Africa was apparently complete by about 120 Ma, too far in the past for direct overland migration. A recent hypothesis suggested that uplifted land in the Mozambique Channel assisted colonization of Madagascar 26-45 Ma, seemingly agreeing with an estimated date of about 40 Ma for divergence of lemurs from other primates. However, mounting evidence suggests that divergence occurred significantly earlier. Because the earliest known fossil representatives of several modern orders of placental mammals (including primates) are dated no earlier than the early Tertiary, it is widely accepted that their divergence took place after the Cretaceous/Tertiary mass extinction. Yet the known fossil record can only yield minimum divergence times; if sampling is poor and/or biased there may be a considerable discrepancy between minimum and actual dates. There is, for example, virtually no known fossil record for lemurs in Madagascar and the earliest known representatives are subfossil lemurs, so in this case a direct reading of the fossil record would indicate that the lemurs first originated just a few thousand years ago! Examination of underestimation of times of origin because of poor sampling in the fossil record has confirmed previous suggestions that primates originated considerably earlier than generally believed. Several recent phylogenetic reconstructions based on DNA sequence data and using calibration dates derived from groups other than primates provide independent support for this inference. Overall, it now seems that primates originated at around 90 Ma rather than the 55 Ma indicated by direct reading of the known fossil record. Hence, colonization of Madagascar by lemurs would have taken place at about 80 Ma, double the date usually accepted, and should be interpreted in terms of contemporary continental relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号