首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the antioxidant effect of adrenomedullin (AM) on endothelial function in the Dahl salt-sensitive (DS) rat hypertension model. Dahl salt-resistant (DR) and DS rats were fed an 8% NaCl diet. In addition, the DS rats were subcutaneously infused with either saline or recombinant human AM for 4 weeks. Although systolic blood pressures measured weekly in AM- and saline-infused rats did not significantly differ, aortic O2*- levels were significantly (P<0.01) higher in the latter. Likewise, both endothelial nitric oxide synthase (eNOS) mRNA and protein were significantly higher in saline-infused DS rats. Infusion of AM reduced both O2*- and eNOS expression to levels comparable to those seen in DR rats. AM infusion also upregulated the gene expression of guanosine-5'-triphosphate cyclohydrolase I and downregulated the expression of p22(phox), suggesting that AM increased the NOS coupling and bioavailability of NO. AM possesses significant antioxidant properties that improve endothelial function.  相似文献   

2.
Subcutaneous injections of adrenomedullin prevented reserpine-induced gastric mucosal damage in a dose-dependent manner (1-1000 ng/kg), but did not interfere with the lesions produced by ethanol administration. In pylorus-ligated rats adrenomedullin significantly reduced gastric volume, total and free acid output as well as ulcer formation. The gastroprotective activity of adrenomedullin was not present in rats pretreated with cysteamine. These results suggest that adrenomedullin exerts its antiulcer effect, when it is administered subcutaneously (s.c.), probably by a mechanism which involves somatostatin related transmission.  相似文献   

3.
4.
The aim of this study was to investigate whether time-dependent variations in the relaxant effect of acetylcholine, an endothelium-dependent vasorelaxant via muscarinic receptors, and isoprenaline, a nonselective β-adrenoceptor agonist in rat aorta, are influenced by streptozotocin (STZ)-induced experimental diabetes. Adult male rats were divided randomly into two groups: control and STZ-induced (STZ, 55 mg/kg, intraperitoneal) diabetes. The animals were synchronized to a 12:12 h light-dark cycle (lights on 08:00 h) and sacrificed at six different times of day (1, 5, 9, 13, 17, and 21 hours after lights on; HALO) eight weeks after STZ injection. The in vitro responsiveness of thoracic aorta rings obtained from control and diabetic rats to acetylcholine (10-9-10-5 M) and isoprenaline (10-10-10-3 M) was determined in six different times. EC50 (the concentration inducing half of the maximum response) values and maximum responses were calculated from cumulative concentration-response curves of the agonists and were analyzed with respect to time and STZ treatment. Treatment, time, and interactions between treatment and time were tested by two-way analysis of variance (ANOVA). To analyze differences due to biological time, one-way ANOVA was used. STZ treatment did not significantly change EC50 values or maximum responses for both agonists. There were statistically significant time-dependent variations in the EC50 values for isoprenaline and maximum responses for both acetylcholine and isoprenaline in control groups by one-way ANOVA, but significant time-dependent variations disappeared in the aortas isolated from STZ-induced diabetic rats. The vasodilator responses to acetylcholine and isoprenaline failed to show any significant interaction (treatment×time of study) between STZ treatment and time of sacrifice in both EC50 values and maximum responses by two-way ANOVA. These results indicate there is a basic temporal pattern in the responses to acetylcholine and isoprenaline in rat aorta which continues in diabetes. It is shown for the first time that experimental diabetes does not change the 24 h pattern of responses to acetylcholine and isoprenaline, and that time-dependent variations in the responses to these agonists disappear in diabetic animals. Although further studies are required to define the underlying mechanism(s) of these findings, results suggest that experimental diabetes can modify the time-dependent vasorelaxant responses of rat aorta. This may help to understand the circadian rhythms in cardiovascular physiology and pathology or in drug effects in diabetes.  相似文献   

5.
The endogenous peptides endomorphins 1 and 2 are newly discovered, potent, selective mu-opioid receptor agonists. In the present study, the effects of endomorphins 1 and 2 on vascular smooth muscle tone were investigated on isolated rings from rat aorta with and without endothelium. In rings precontracted with phenylephrine, endomorphins 1 and 2 at concentrations of 0.1 and 1.0 microM, nociceptin at concentrations of 1-100 microM, and adrenomedullin at concentrations of 0.01-1.0 microM induced concentration dependent relaxant responses. The endomorphins and nociceptin were less potent than adrenomedullin. No relaxation was induced by endomorphins 1 and 2 in aortic rings denuded of endothelium and precontracted with phenylephrine. The results of the present studies demonstrate that the endomorphins relax aortic vascular smooth muscle from the rat aorta by an endothelium-dependant mechanism.  相似文献   

6.
《Life sciences》1994,55(5):PL85-PL90
Responses to synthetic human adrenomedullin, a novel hypotensive peptide isolated from human pheochromccytoma cells, and the carboxy terminal 15-52 amino acid fragment of adrenomedullin (ADM15-52) were investigated in the hindlimb vascular bed of the cat under constant flow conditions. Intraarterial injections of the peptides in doses of 0.01–0.3 nmol caused dose-related decreases in hindlimb perfusion pressure. When compared on a nmol basis, adrenomedullin and ADM15-52 were similar to bradykinin in visodilator potency and were approximately 10 fold less potent than acetylcholine. The half-life of the vasodilator response to adrenomedullin and ADM15-52 ranged from 55 to 80 sec and was greater than the half-life of vasodilator responses to bradykinin in doses of 0.01–0.3 nmol and acetylcholine in doses of 0.01–0.3 nmol. The present data demonstrate that synthetic human adrenomedullin and ADM15-52 have potent but relatively short-lasting vasodilator activity in the hindlimb vascular bed of the cat. These data suggest that amino acid residues 15-52 of adrenomedullin are important for the expression of vasodilator activity in the hindlimb vascular bed of the cat.  相似文献   

7.
Dexrazoxane is used clinically to reduce the cardiotoxicity of anthracycline cancer chemotherapeutic agents, acting by an iron-chelating antioxidant mechanism. In a study designed to explore the possible mechanism of the recently described neuroprotective effect of the drug in cerebral ischemia, its influence on vascular reactivity was determined in rat aortic rings. Dexrazoxane was found to be devoid of direct contractile or relaxant activity and to have no influence on responses to acetylcholine or histamine (relaxation), or to angiotensin or serotonin (contraction). In contrast, it decreased contractions to norepinephrine, as evidenced by rightward displacement of the concentration-response curves. The effect was prevented by the removal of the endothelium and by the alpha(2)-adrenoceptor antagonist yohimbine; it was partially antagonized by the endothelium-derived depolarizing factor inhibitor clotrimazole, but was not affected by L-NAME or indomethacin, inhibitors of endothelial nitric oxide and prostacyclin production. The anti-contractile effect did not occur in rings stimulated with the alpha(1)-adrenoceptor agonist phenylephrine. It was concluded that dexrazoxane opposes norepinephrine vascular contraction by enhancing endothelial alpha(2)-adrenoceptor-mediated release of relaxing factor(s). The drug could thus offset the deleterious vasoconstriction elicited by the increased circulating catecholamines present during cerebral ischemia, and by this mechanism produce neuroprotection.  相似文献   

8.
The biosynthesis of many peptides including vasoactive intestinal polypeptide (VIP) requires enzymatic alpha-carboxyamidation via a glycine-extended intermediate form. In an effort to identify and quantify glycine-extended VIP in rat tissue extracts a radio-immunoassay specific for this peptide was developed. The concentrations of glycine-extended VIP ranged from 1.3 pmol/g in the brain to 83.9 pmol/g in the small intestine. The identity of the peptide was substantiated by cation-exchange HPLC. The ratio of glycine-extended VIP to amidated VIP varied considerably being highest (63%) in the small intestine. The natural occurrence of glycine-extended VIP in connection with our recent demonstration of its biological activity suggest a physiological role for this biosynthetic intermediate VIP form.  相似文献   

9.
10.
Vasodilative effect of perillaldehyde on isolated rat aorta   总被引:2,自引:0,他引:2  
The vasodilative effect of perillaldehyde, one of the major oil components in Perilla frutescens BRITTON, was studied using isolated rat aorta. Perillaldehyde at final concentrations of 0.01 to 1 mM showed dose-dependent relaxation of the aorta contracted by treatment with prostaglandin F2alpha or norepinephrine. Neither the presence of NG-nitro-L-arginine methyl ester nor removal of the aortic endothelium affected the vasodilatation, suggesting that perillaldehyde exerts a direct effect on vascular smooth muscle cells. The vasodilative effect of perillaldehyde was not inhibited by pretreatment with a beta-adrenergic receptor blocker (propranolol), an inhibitor of phosphodiesterase (theophylline), a delayed rectifier K+ channel blocker (tetraethylammonium chloride), or an ATP-sensitive K+ channel blocker (glibenclamide). However, perillaldehyde showed contrasting effects on vasodilatation of the aorta contracted by an influx of extracellular Ca2+ - perillaldehyde caused little vasodilatation on the aorta contracted by the Ca2+ ionophore A23187, while it inhibited the vasoconstriction induced by treatment with high-concentration K+, which dominantly opened the voltage-dependent Ca2+ channel. These results suggest that the vasodilative effect of perillaldehyde is derived from blocking the Ca2+ channels.  相似文献   

11.
Increased generation of oxidants and (or) reduced endogenous antioxidant defense mechanisms are associated with the etiology of diabetic vascular complications. The aim of the present study was to evaluate whether curcumin supplementation increases the vasodilatory effect of cilostazol in streptozotocin induced diabetic rat aorta. Cumulative addition of cilostazol caused concentration-dependent relaxations of thoracic aorta rings. The sensitivity and the maximal response to cilostazol were significantly higher in control than those in diabetic animals. Treatment with curcumin in control rats increased the sensitivity to cilostazol. Further, in aortic rings from diabetic rats treated with curcumin, the responses to cilostazol were significantly increased in comparison to the response in aorta from untreated diabetic rats. It can be conclude, that curcumin increases the cilostazol-induced vasodilation in diabetic rat aorta.  相似文献   

12.
S. Rapoport  W. Dubiel  M. Müller 《FEBS letters》1983,160(1-2):134-136
The ATP-dependent proteolysis of rat liver mitochondria prepared in electrolyte-poor sucrose media requires the presence of Ca2+. Lanthanum, an inhibitor of Ca2+ uptake, inhibits the proteolysis. In contrast, proteolysis of mitochondria prepared in a salt medium does not require Ca2+, nor is it inhibited by lanthanum. It is concluded that Caa+ exerts its effect in an indirect manner, by causing swelling and thereby increasing the accessibility of the membrane proteins of the inner mitochondrial membrane.  相似文献   

13.
Peroxynitrite (PN) worsens pathological conditions associated with oxidative stress. However, beneficial effects have also been reported. PN has been shown to demonstrate vasodilator as well as vasoconstrictor properties that are dependent upon the experimental conditions and the vascular bed studied. PN-induced vascular smooth muscle relaxation may involve the formation of nitric oxide (NO) donors. The present results show that PN has significant vasodilator activity in the pulmonary and systemic vascular beds, and that responses to PN were not attenuated by L-penicillamine (L-PEN), a PN scavenger, whereas responses to sodium nitroprusside (SNP) were decreased. PN had a small inhibitory effect on decreases in arterial pressure in response to the NO donors diethylammonium (Z)-1-(N,N-diethylamino)diazen-1-ium-1,2-diolate (DEA/NO) and S-nitrosoglutathione (GSNO). PN partially reversed hypoxic pulmonary vasoconstriction. PN responses were attenuated by the soluble guanylate cyclase (sGC) inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and responses to PN and the PN precursor, 3-morpholinosydnonimine (SIN-1), were different. These data show that PN has potent pulmonary vasodilator activity in the rat, and provide evidence that a PN interaction with S-nitrosothiols is not the major mechanism mediating the response. These data suggest that responses to PN are mediated by the activation of sGC, and that PN has a small inhibitory effect on NO responses.  相似文献   

14.
《Life sciences》1994,54(23):PL409-PL412
The purpose of the present study was to investigate the effects of products of the ADM gene other than ADM on systemic hemodynamics in the anesthetized rat, rabbit, piglet, cat and dog. Bolus intravenous (i.v.) injections of rat proADM22–41 (3–30μg) significantly decreased systemic arterial pressure (SAP) and systemic vascular resistance in the anesthetized rat. Unlike ADM, rat proADM22–41 markedly increased cardiac output in the rat. Bolus i.v. injections of human proADM22–41 up to 500μm had not effect in all species studied and rat proADM22–41 had no effect in species other than the rat. The present data suggest that rat proADM22–41 is a novel product of the ADM gene other than ADM and possesses marked systemic vasodilator activity. The present data also suggest that the hemodynamic activity of this peptide is species specific.  相似文献   

15.
Here we investigated the effect of the flavonoid galangin in isolated rat thoracic aortic rings. Galangin (0.1-100 microM) induced relaxation in rings pre-contracted with phenylephrine (PE 1 microM) or with KCl (100 mM) or pre-treated with the nitric oxide synthase inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME, 100 microM), the cyclooxygenase inhibitor indomethacin (10 microM) and the adenylate cyclase inhibitor, SQ 22,536 (100 microM). In another set of experiments, rat aortic rings were incubated with galangin (1-100 microM) and the contractile responses to PE (0.001-3 microM) or to KCl (60 mM) were evaluated. We also evaluated the effect of galangin (100 microM) on PE (10 microM)-induced contraction in a Ca2+-free medium. Galangin relaxed aortic rings with or without endothelium. Galangin effect was significantly inhibited by L-NAME. Galangin inhibited the contractile response to PE, either in presence or in absence of external calcium, and to KCl. In the end, we also found that galangin caused nitric oxide (NO) release from aortic rings and abolished the increase in [Ca2+]i triggered by PE or KCl in aortic smooth muscle cells, either in presence and in absence of external Ca2+. Our results suggest that galangin reduces the contractility of rat aortic rings through an endothelium-dependent mechanism, involving NO, and also through an endothelium-independent mechanism, inhibiting calcium movements through cell membranes.  相似文献   

16.
Both endothelin (ET) and adrenomedullin (AM), produced by cardiac myocytes, are thought to be locally-acting hormones in the heart. Recently, calcitonin receptor-like receptor (CRLR) and receptor activity modifying proteins (RAMPs) have been shown to function together to serve as AM receptors stimulating cAMP production. In the present study, we examined the effects of ET on AM secretion, intracellular cAMP response to AM, and gene expressions of CRLR and RAMPs in cultured cardiac myocytes. Synthetic ET-1 dose-dependently increased AM secretion from the cardiomyocytes. AM increased the intracellular cAMP level in a dose-dependent manner and the cAMP accumulation by AM was significantly amplified by 24 h preincubation with ET-1. 10 nmol/L ET-1 significantly increased the CRLR mRNA level without any effect on RAMP1 mRNA. 1 micromol/L ET-1 significantly reduced the RAMP2 mRNA level, but ET-1 dose-dependently increased the RAMP3 mRNA level in the cardiac myocytes. These findings suggest that ET-1 not only stimulates AM secretion, but also modulates intracellular cAMP responses to AM probably by altering the expressions of CRLR and RAMPs in rat cardiomyocytes.  相似文献   

17.
S-adenosylmethionine (SAMe) has been shown to protect hepatocytes from toxic injury, both experimentally-induced in animals and in isolated hepatocytes. The mechanisms by which SAMe protects hepatocytes from injury can result from the pathways of SAMe metabolism. Unfortunately, data documenting the protective effect of SAMe against mitochondrial damage from toxic injury are not widely available. Thioacetamide is frequently used as a model hepatotoxin, which causes in vivo centrilobular necrosis. Even though thioacetamide-induced liver necrosis in rats was alleviated by SAMe, the mechanisms of this protective effect remain to be verified. The aim of our study was to determine the protective mechanisms of SAMe on thioacetamide-induced hepatocyte injury by using primary hepatocyte cultures. The release of lactate dehydrogenase (LDH) from cells incubated with thioacetamide for 24 hours, was lowered by simultaneous treatment with SAMe, in a dose-dependent manner. The inhibitory effect of SAMe on thioacetamide-induced lipid peroxidation paralleled the effect on cytotoxicity. A decrease in the mitochondrial membrane potential, as determined by Rhodamine 123 accumulation, was also prevented. The attenuation by SAMe of thioacetamide-induced glutathione depletion was determined after subsequent incubation periods of 48 and 72 hours. SAMe protects both cytoplasmic and mitochondrial membranes. This effect was more pronounced during the development of thioacetamide-induced hepatocyte injury that was mediated by lipid peroxidation. Continuation of the SAMe treatment then led to a reduction in glutathione depletion, as a potential consequence of an increase in glutathione production, for which SAMe is a precursor.  相似文献   

18.
OBJECTIVE: We investigated the pathophysiological role of the renal adrenomedullin (AM) system, including the ligand, receptor, and amidating activity, in severe hypertensive rats. METHOD: We studied three groups: control Wistar Kyoto rats (WKY), spontaneously hypertensive stroke-prone rats (SHR-SP), and diuretic-treated SHR-SP. We measured AM-mature, active form, and AM-total (active form+inactive form) in plasma and renal tissues, and mRNA levels of AM and AM receptor system components such as calcitonin receptor-like receptor (CRLR), receptor activity-modifying protein (RAMP) 2, and RAMP3 in renal tissues. RESULTS: SHR-SP had higher blood pressure, plasma neurohumoral factors, and lower renal function than WKY. SHR-SP had higher AM-mature and AM-total levels in plasma and renal tissues than WKY. Although the plasma AM-mature/AM-total ratio was similar in the two groups, AM-mature/AM-total ratio in renal tissues was higher in SHR-SP than in WKY. In addition, mRNA levels of AM in the renal cortex and medulla and the mRNA levels of CRLR, RAMP2, and RAMP3 in the renal cortex were higher in SHR-SP than in WKY. Chronic diuretic treatment decreased blood pressure and improved kidney function and neurohumoral factors, with reductions in plasma and renal AM system. CONCLUSION: Upregulation of circulating and renal AM system may modulate pathophysiology in SHR-SP.  相似文献   

19.
Protective effect of adrenomedullin in mannitol-induced apoptosis   总被引:2,自引:0,他引:2  
Mannitol therapy is widely used for reducing brain edema, and ischemic brain swelling. However, mannitol at clinical concentrations induces apoptosis in endothelial cells. Because apoptosis may be a pathogenic mechanism in vascular injury, antiapoptotic agents may have a protective role in mannitol-induced apoptosis. In this study, we examined whether adrenomedullin (AM) prevents mannitol-induced apoptosis and also evaluated the associated signaling pathway of AM in human umbilical vein endothelial cells. AM prevented mannitol-induced apoptosis in a dose-dependent manner. Pretreatment with wortmannin blocked the AM-induced antiapoptotic effect. AM stimulated Akt at Ser473, and wortmannin inhibited the AM-induced Akt phosphorylation. These findings indicate that phosphatidylinositol 3-kinase/Akt pathway transmits the survival signal from AM. The potency of antiapoptotic effect of AM is stronger than that of vascular endothelial growth factor and angiopoietin-1 in mannitol-induced apoptosis. AM can have a protective role not only in umbilical vein, but also in pulmonary, coronary, and aortic endothelial cells. These findings indicate that AM has a potent protective role in mannitol-induced apoptosis, through phosphatidylinositol 3-kinase/Akt pathway. Therefore, pretreatment with AM might help to maintain normal endothelial integrity during systemic mannitol therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号