首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Expression of innate immune genes such as beta-defensins is induced in airway epithelium by bacterial components via activation of NF-kappaB. We show here that live Gram-negative bacteria can similarly stimulate this pathway, resulting in upregulation of the beta-defensin tracheal antimicrobial peptide (TAP) in primary cultures of bovine tracheal epithelial cells (TECs), by a Toll-like receptor 4 (TLR4)-mediated pathway. The Gram-negative airway pathogen Bordetella bronchiseptica possesses a type III secretion system previously suggested to inhibit the nuclear translocation of NF-kappaB in a cell line by immunohistochemistry. We therefore hypothesized that this pathogen might interfere in the innate immune response of the epithelium. Exposure of TECs to wild-type B. bronchiseptica suppressed the activation of NF-kappaB and the subsequent induction of TAP mRNA levels, whereas a type III secretion-defective strain did not. These results suggest a mechanism for bacterial evasion of the innate immune response in the airway, which could allow for the observed persistent colonization of this pathogen.  相似文献   

2.
Competition for cellular iron (Fe) is a vital component of the interaction between host and pathogen. Most bacteria have an obligate requirement for Fe to sustain infection, growth, and survival in host. To obtain iron required for growth, many bacteria secrete iron chelators (siderophores). This study was undertaken to test whether a bacterial siderophore, deferoxamine (DFO), could trigger inflammatory signals in human intestinal epithelial cells as a single stimulus. Incubation of human intestinal epithelial HT-29 cells with DFO increased the expression of IL-8 mRNA, as well as the release of IL-8 protein. The signal transduction study revealed that both p38 and extracellular signal-regulated kinase-1/2 were significantly activated in response to DFO. Accordingly, the selective inhibitors for both kinases, either alone or in combination, completely abolished DFO-induced IL-8 secretion, indicating an importance of mitogen-activated protein kinases pathway. These proinflammatory effects of DFO were, in large part, mediated by activation of Na(+)/H(+) exchangers, because selective blockade of Na(+)/H(+) exchangers prevented the DFO-induced IL-8 production. Interestingly, however, DFO neither induced NF-kappaB activation by itself nor affected IL-1beta- or TNF-alpha-mediated NF-kappaB activation, suggesting a NF-kappaB-independent mechanism in DFO-induced IL-8 production. Global gene expression profiling revealed that DFO significantly up-regulates inflammation-related genes including proinflammatory genes, and that many of those genes are down-modulated by the selective mitogen-activated protein kinase inhibitors. Collectively, these results demonstrate that, in addition to bacterial products or cell wall components, direct chelation of host Fe by infected bacteria may also contribute to the evocation of host inflammatory responses.  相似文献   

3.
The role of LL-37, a human cationic antimicrobial peptide, in the immune system is not yet clearly understood. It is a widely expressed peptide that can be up-regulated during an immune response. In this report, we demonstrate that LL-37 is a potent antisepsis agent with the ability to inhibit macrophage stimulation by bacterial components such as LPS, lipoteichoic acid, and noncapped lipoarabinomannan. We also demonstrate that LL-37 protects mice against lethal endotoxemia. In addition to preventing macrophage activation by bacterial components, we hypothesized the LL-37 may also have direct effects on macrophage function. We therefore used gene expression profiling to identify macrophage functions that might be modulated by LL-37. These studies revealed that LL-37 directly up-regulates 29 genes and down-regulated another 20 genes. Among the genes predicted to be up-regulated by LL-37 were those encoding chemokines and chemokine receptors. Consistent with this, LL-37 up-regulated the expression of chemokines in macrophages and the mouse lung (monocyte chemoattractant protein 1), human A549 epithelial cells (IL-8), and whole human blood (monocyte chemoattractant protein 1 and IL-8), without stimulating the proinflammatory cytokine, TNFalpha. LL-37 also up-regulated the chemokine receptors CXCR-4, CCR2, and IL-8RB. These findings indicate that LL-37 may contribute to the immune response by limiting the damage caused by bacterial products and by recruiting immune cells to the site of infection so that they can clear the infection.  相似文献   

4.
The innate immune response is mediated in part by pattern recognition receptors including Toll-like receptors (TLRs). The pleural mesothelial cells (PMCs) that line the pleural surface are in direct contact with pleural fluid and accordingly carry the risk of exposure to infiltrating microorganisms or their components in an event of a complicated parapneumonic effusion. Here we show that murine primary PMCs constitutively express TLR-1 through TLR-9 and, upon activation with peptidoglycan (PGN), mouse PMC produce antimicrobial peptide beta-defensin-2 (mBD-2). Treatment of PMCs with staphylococcal PGN, a gram-positive bacterial cell wall component and a TLR-2 agonist, resulted in a significant increase in TLR-2 and mBD-2 expression. Silencing of TLR-2 expression by small interfering RNA led to the downregulation of PGN-induced mBD-2 expression, thereby establishing causal relationship between the activation of TLR-2 receptor and mBD-2 production. PMCs exposed to PGN showed increased p38 MAPK activity. In addition, PGN-induced mBD-2 expression was attenuated by SB203580, a p38 MAPK inhibitor, underlining the importance of p38 MAPK in mBD-2 induction. Inhibition of erk1/erk2 or phosphatidylinositol 3-kinase did not block PGN-induced mBD-2 expression in PMC. PGN-activated PMC-derived mBD-2 significantly killed Staphylococcus aureus, and mBD-2-neutralizing antibodies blunted this antimicrobial activity. Taken together, these data indicate that PMCs may contribute to host innate immune defense upon exposure to gram-positive bacteria or their products within the pleural space by upregulating TLR-2 and mBD-2 expression.  相似文献   

5.
6.
Peptidoglycan recognition proteins (PGRPs), a novel family of pattern recognition molecules (PRMs) in innate immunity conserved from insects to mammals, recognize bacterial cell wall peptidoglycan (PGN) and are suggested to act as anti-bacterial factors. In humans, four kinds of PGRPs (PGRP-L, -Ialpha, -Ibeta and -S) have been cloned and all four human PGRPs bind PGN. In this study, we examined the possible regulation of the expression of PGRPs in oral epithelial cells upon stimulation with chemically synthesized pathogen-associated molecular patterns (PAMPs) in bacterial cell surface components: Escherichia coli-type tryacyl lipopeptide (Pam3CSSNA), E. coli-type lipid A (LA-15-PP), diaminopimelic acid containing desmuramyl peptide (gamma-D-glutamyl-meso-DAP; iE-DAP), and muramyldipeptide (MDP). These synthetic PAMPs markedly upregulated the mRNA expression of the four PGRPs and cell surface expression of PGRP-Ialpha and -Ibeta, but did not induce either mRNA expression or secretion of inflammatory cytokines, in oral epithelial cells. Suppression of the expression of Toll-like receptor (TLR)2, TLR4, nucleotide-binding oligomerization domain (NOD)1 and NOD2 by RNA interference specifically inhibited the upregulation of PGRP mRNA expression induced by Pam3CSSNA, LA-15-PP, iE-DAP and MDP respectively. These PAMPs definitely activated nuclear factor (NF)-kappaB in the epithelial cells, and suppression of NF-kappaB activation clearly prevented the induction of PGRP mRNA expression induced by these PAMPs in the cells. These findings suggested that bacterial PAMPs induced the expression of PGRPs, but not proinflammatory cytokines, in oral epithelial cells, and the PGRPs might be involved in host defence against bacterial invasion without accompanying inflammatory responses.  相似文献   

7.
Four genes encoding small proteins with significantly high glycine content have been identified from root nodules of Medicago sativa. All of these proteins as well as their Medicago truncatula homologues carried an amino terminal signal peptide and a glycine-rich carboxy terminal domain. All except nodGRP3 lacked the characteristic repeat structure described for cell wall and stress response-related glycine-rich proteins (GRP). Expression of these GRP genes was undetectable in flower, leaf, stem, and hypocotyl cells, whereas expression was highly induced during root nodule development, suggesting that GRP genes act as nodulins. Moreover, none of these nodule-expressed GRP genes were activated by hormones or stress treatments, which are inducers of many other GRPs. In Rhizobium-free spontaneous nodules and in nodules induced by a noninfective mutant strain of Sinorhizobium meliloti, all these genes were repressed, while they were induced in Fix- nodules, unaffected in bacterial infection, but halted in bacteroid differentiation. These results demonstrated that bacterial infection but not bacteroid differentiation is required for the induction of the nodule-specific GRP genes. Differences in kinetics and localization of gene activation as well as in the primary structure of proteins suggest nonredundant roles for these GRPs in nodule organogenesis.  相似文献   

8.
9.
The complement system has been discovered in invertebrates and vertebrates, and plays a crucial role in the innate defense against common pathogens. As a central component in the complement system, complement component 3 (C3) is an intermediary between innate and adaptive immune system. In this study, a new isoform of C3 in the sea cucumber Apostichopus japonicus, termed AjC3-2 was identified. Its open reading frame (ORF) is 5085?bp and encodes for 1695 amino acids with a putative signal peptide of 20 amino acid residues. The mature protein molecular weight of AjC3-2 was 187.72?kDa. It has a conserved thioester site and a linker R(689)RRR(692) where AjC3-2 is splitted into β and α chain during posttranslational modification. The expression patterns of two distinct sea cucumber C3 genes, AjC3-2 and AjC3, were similar. During the different development stages from unfertilized egg to juvenile of the sea cucumber, the highest expression levels of AjC3-2 and AjC3 genes were both found in late auricularia. In the adult, the highest expression of these two genes was observed in the coelomocytes and followed by the body wall. AjC3-2 and AjC3 genes expression increased significantly at 6?h after the LPS challenge. These results indicated that these two C3 genes play a pivotal role in immune responses to the bacterial infection in sea cucumber.  相似文献   

10.
The innate immune system constitutes the first line of defence against invading microbes. The basis of this defence resides in the recognition of defined structural motifs of the microbes called “Microbial associated molecular patterns” that are absent in the host. Cell wall, the outer layer of both bacterial and fungal cells, a unique structure that is absent in the host and is recognized by the germ line encoded host receptors. Nucleotide oligomerization domain proteins, peptidoglycan recognition proteins and C-type lectins are host receptors that are involved in the recognition of bacterial cell wall (usually called peptidoglycan), whereas fungal cell wall components (N- and O-linked mannans, β-glucans etc.) are recognized by host receptors like C-type lectins (Dectin-1, Dectin-2, mannose receptor, DC-SIGN), Toll like receptors-2 and -4 (TLR-2 and TLR-4). These recognitions lead to activation of a variety of host signaling cascades and ultimate production of anti-microbial compounds including phospholipase A2, antimicrobial peptides, lysozyme, reactive oxygen and nitrogen species. These molecules act in cohort against the invading microbes to eradicate infections. Additionally pathogen recognition leads to the production of cytokines, which further activate the adaptive immune system. Both pathogenic and commensal bacteria and fungus use numerous strategies to subvert the host defence. These strategies include bacterial peptidoglycan glycan backbone modifications by O-acetylation, N-deacetylation, N-glycolylation and stem peptide modifications by amidation of meso-Diaminopimelic acid; fungal cell wall modifications by shielding the β-glucan layer with mannoproteins and α-1,3 glucan. This review focuses on the recent advances in understanding the role of bacterial and fungal cell wall in their innate immune recognition and evasion strategies.  相似文献   

11.
12.
Caspases have been extensively studied as critical initiators and executioners of cell death pathways. However, caspases also take part in non-apoptotic signalling events such as the regulation of innate immunity and activation of nuclear factor-κB (NF-κB). How caspases are activated under these conditions and process a selective set of substrates to allow NF-κB signalling without killing the cell remains largely unknown. Here, we show that stimulation of the Drosophila pattern recognition protein PGRP-LCx induces DIAP2-dependent polyubiquitylation of the initiator caspase DREDD. Signal-dependent ubiquitylation of DREDD is required for full processing of IMD, NF-κB/Relish and expression of antimicrobial peptide genes in response to infection with Gram-negative bacteria. Our results identify a mechanism that positively controls NF-κB signalling via ubiquitin-mediated activation of DREDD. The direct involvement of ubiquitylation in caspase activation represents a novel mechanism for non-apoptotic caspase-mediated signalling.  相似文献   

13.
14.
15.
Jin LH  Shim J  Yoon JS  Kim B  Kim J  Kim-Ha J  Kim YJ 《PLoS pathogens》2008,4(10):e1000168
Essential aspects of the innate immune response to microbial infection appear to be conserved between insects and mammals. Although signaling pathways that activate NF-kappaB during innate immune responses to various microorganisms have been studied in detail, regulatory mechanisms that control other immune responses to fungal infection require further investigation. To identify new Drosophila genes involved in antifungal immune responses, we selected genes known to be differentially regulated in SL2 cells by microbial cell wall components and tested their roles in antifungal defense using mutant flies. From 130 mutant lines, sixteen mutants exhibited increased sensitivity to fungal infection. Examination of their effects on defense against various types of bacteria and fungi revealed nine genes that are involved specifically in defense against fungal infection. All of these mutants displayed defects in phagocytosis or activation of antimicrobial peptide genes following infection. In some mutants, these immune deficiencies were attributed to defects in hemocyte development and differentiation, while other mutants showed specific defects in immune signaling required for humoral or cellular immune responses. Our results identify a new class of genes involved in antifungal immune responses in Drosophila.  相似文献   

16.
IsCT-P (ILKKIWKPIKKLF-NH2) is a novel alpha-helical antimicrobial peptide with bacterial cell selectivity designed from a scorpion-derived peptide IsCT. To investigate the role of L- or D-Pro kink on the structure and the mode of action of a short alpha-helical antimicrobial peptide with bacterial cell selectivity, we synthesized IsCT-p, in which D-Pro is substituted for L-Pro8 of IsCT-P. CD spectra revealed that IsCT-P adopted a typical alpha-helical structure in various membrane-mimicking conditions, whereas IsCT-p showed a random structure. This result indicated that D-Pro in the central position of a short alpha-helical peptide provides more remarkable structural flexibility than L-Pro. Despite its higher antibacterial activity, IsCT-p was much less effective at inducing dye leakage in the negatively charged liposome mimicking bacterial membrane and induced no or little membrane potential depolarization of Staphylococcus aureus. Confocal laser scanning microscopy showed that IsCT-p penetrated the bacterial cell membrane and accumulated in the cytoplasm, whereas IsCT-P remained outside or on the cell membrane. These results suggested that the major target of IsCT-P and IsCT-p is the bacterial membranes and intracellular components, respectively. Collectively, our results demonstrated that the central D-Pro kink in alpha-helical antimicrobial peptides plays an important role in penetrating bacterial membrane as well as bacterial cell selectivity.  相似文献   

17.
Efficient response to environmental cues is crucial to successful infection by plant-pathogenic bacteria such as Erwinia carotovora ssp. carotovora. The expression of the main virulence genes of this pathogen, encoding extracellular enzymes that degrade the plant-cell wall, is subject to complex regulatory machinery where two-component systems play an important role. In this paper, we describe for the first time the involvement of the PmrA-PmrB two-component system in regulation of virulence in a plant-pathogenic bacterium. Disruption of pmrB resulted in reduced virulence both in potato and in Arabidopsis. This is apparently due to reduced production of the extracellular enzymes. In contrast, a pmrA mutant exhibited increased levels of these enzymes implying negative regulation of the corresponding genes by PmrA. Furthermore, the pmrB but not pmrA mutant exhibited highly increased resistance to the cationic antimicrobial peptide polymyxin B suggesting alterations in cell surface properties of the mutant. A similar increase of polymyxin resistance was detected in the wild type at mildly acidic pH with low Mg2+. Functional pmrA is essential for bacterial survival on excess iron at acidic pH, regardless of the Mg2+ concentration. We propose that PmrA-PmrB TCS is involved in controlling of bacterial response to external pH and iron and is crucial for bacterial virulence and survival in planta.  相似文献   

18.
19.
The templates of innate immunity have ancient origins. Thus, such model animals as the fruit fly, Drosophila melanogaster, can be used to identify gene products that also play a key role in the innate immunity in mammals. We have used oligonucleotide microarrays to identify genes that are responsive to gram-negative bacteria in Drosophila macrophage-like S2 cells. In total, 53 genes were induced by greater than threefold in response to Escherichia coli. The induction of all these genes was peptidoglycan recognition protein LC (PGRP-LC) dependent. Twenty-two genes including 10 of the most strongly induced genes are also known to be up-regulated by septic injury in vivo. Importantly, we identified 31 genes that are not known to respond to bacterial challenge. We carried out targeted dsRNA treatments to assess the functional importance of these gene products for microbial recognition, phagocytosis and antimicrobial peptide release in Drosophila S2 cells in vitro. RNAi targeting three of these genes, CG7097, CG15678 and beta-Tubulin 60D, caused altered antimicrobial peptide release in vitro. Our results indicate that the JNK pathway is essential for normal antimicrobial peptide release in Drosophila in vitro.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号