首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The complete amino acid sequence of cytochrome c551 isolated from an aerobic photosynthetic bacterium, Erythrobacter sp. strain OCh 114, was determined. The cytochrome molecule was composed of a total of 119 amino acid residues and its molecular weight including heme was calculated to be 13,235. The sequence was (Sequence: see text). Its molecular weight indicates that this cytochrome is of the L-type. Sequence alignment with other bacterial cytochromes c shows that this cytochrome is similar to cytochromes c of Rhodobacter capsulatus, Rhodobacter sphaeroides, and Paracoccus denitrificans, which were grouped into the alpha-3 subcluster from the 16S rRNA sequence analysis.  相似文献   

2.
The gene (coxII) encoding subunit II of Rhodobacter sphaeroides cytochrome c oxidase (cytochrome aa3) has been isolated by screening a genomic DNA library in phage lambda with a probe derived from coxII of Paracoccus denitrificans. A 2-kb fragment containing coxII DNA was subcloned into the phage M13mp18 and the sequence determined. The 2-kb insert contains the entire coding region for coxII gene, including the ATG start codon and a TGA stop codon. The deduced amino acid (aa) sequence of subunit II of R. sphaeroides shows regions of substantial homology to the corresponding subunit of the bovine mitochondrial oxidase (63% overall) and P. denitrificans oxidase (68% overall). The postulated redox-active copper ion (CuA) binding site involving two Cys and two His residues (as well as an alternative Met residue) is conserved among these species, along with four invariant acidic aa residues (two Asp and two Glu) that may be involved in interactions with cytochrome c, and a region of aromatic residues (Tyr-Gln-Trp-Tyr-Trp-Gly-Tyr-Glu-Tyr) which is postulated to play a role in electron transfer. Hydropathy profile analysis suggests that while the bovine COXII secondary structure contains two transmembrane helices, the R. sphaeroides subunit II has a third such helix that may function as part of a signal sequence, as suggested for P. denitrificans.  相似文献   

3.
The complete nucleotide sequence of the gene encoding the cytochrome subunit of the photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis, and the derived amino acid sequence are presented. The nucleotide sequence of the gene reveals the existence of a typical bacterial signal peptide of 20 amino acid residues which is not found in the mature cytochrome subunit. The gene encoding the cytochrome subunit is preceded by the gene encoding the M subunit. Both genes overlap by 1 bp. The mature cytochrome subunit consists of 336 amino acid residues; 73% of its amino acid sequence was confirmed by protein sequencing work. The mol. wt of the cytochrome subunit including the covalently bound fatty acids and the bound heme groups is 40 500. The internal sequence homology is low, despite the symmetric structure of the cytochrome subunit previously shown by X-ray crystallographic analysis of the intact photosynthetic reaction centre. Sequence homologies to other cytochromes were not found.  相似文献   

4.
Roseobacter denitrificans (Erythrobacter species strain OCh114) synthesizes bacteriochlorophyll a (BChl) and the photosynthetic apparatus only in the presence of oxygen and is unable to carry out primary photosynthetic reactions and to grow photosynthetically under anoxic conditions. The puf operon of R. denitrificans has the same five genes in the same order as in many photosynthetic bacteria, i.e., pufBALMC. PufC, the tetraheme subunit of the reaction center (RC), consists of 352 amino acids (Mr, 39,043); 20 and 34% of the total amino acids are identical to those of PufC of Chloroflexus aurantiacus and Rubrivivax gelatinosus, respectively. The N-terminal hydrophobic domain is probably responsible for anchoring the subunit in the membrane. Four heme-binding domains are homologous to those of PufC in several purple bacteria. Sequences similar to pufQ and pufX of Rhodobacter capsulatus were not detected on the chromosome of R. denitrificans. The puf operon of R. denitrificans was expressed in trans in Escherichia coli, and all gene products were synthesized. The Roseobacter puf operon was also expressed in R. capsulatus CK11, a puf puc double-deletion mutant. For the first time, an RC/light-harvesting complex I core complex was heterologously synthesized. The strongest expression of the R. denitrificans puf operon was observed under the control of the R. capsulatus puf promoter, in the presence of pufQ and pufX and in the absence of pufC. Charge recombination between the primary donor P+ and the primary ubiquinone Q(A)- was observed in the transconjugant, showing that the M and L subunits of the RC were correctly assembled. The transconjugants did not grow photosynthetically under anoxic conditions.  相似文献   

5.
The respiratory cytochrome bc(1) complex is a fundamental enzyme in biological energy conversion. It couples electron transfer from ubiquinol to cytochrome c with generation of proton motive force which fuels ATP synthesis. The complex from the α-proteobacterium Paracoccus denitrificans, a model for the medically relevant mitochondrial complexes, lacked structural characterization. We show by LILBID mass spectrometry that truncation of the organism-specific, acidic N-terminus of cytochrome c(1) changes the oligomerization state of the enzyme to a dimer. The fully functional complex was crystallized and the X-ray structure determined at 2.7-? resolution. It has high structural homology to mitochondrial complexes and to the Rhodobacter sphaeroides complex especially for subunits cytochrome b and ISP. Species-specific binding of the inhibitor stigmatellin is noteworthy. Interestingly, cytochrome c(1) shows structural differences to the mitochondrial and even between the two Rhodobacteraceae complexes. The structural diversity in the cytochrome c(1) surface facing the ISP domain indicates low structural constraints on that surface for formation of a productive electron transfer complex. A similar position of the acidic N-terminal domains of cytochrome c(1) and yeast subunit QCR6p is suggested in support of a similar function. A model of the electron transfer complex with membrane-anchored cytochrome c(552), the natural substrate, shows that it can adopt the same orientation as the soluble substrate in the yeast complex. The full structural integrity of the P. denitrificans variant underpins previous mechanistic studies on intermonomer electron transfer and paves the way for using this model system to address open questions of structure/function relationships and inhibitor binding.  相似文献   

6.
The covalent modification of water-insoluble membrane polypeptides incorporated into lipid bilayers by native chemical ligation is described. The key feature of this strategy is the use of cubic lipidic phase (CLP) matrixes as reaction media. The CLP-matrix consists of a lipid bilayer into which hydrophobic polypeptides and folded membrane proteins can be inserted and two unbounded aqueous channels that give the aqueous phase access to both sides of an infinite lipid bilayer and thus ensure that modification of solvent-exposed sites is independent of the topology of membrane incorporation. The enzymatic removal of an N-terminal proteolytic cleavage sequence from the membrane polypeptide exposes an N-terminal cysteine residue. Subsequently, a C-terminal thioester peptide is joined to the N-terminus of the polypeptide by a native chemical ligation reaction. By use of this approach, incorporation of a variety of molecular tools, such as spectroscopic probes, unnatural amino acids, and molecular markers into membrane proteins that cannot be easily solubilized in detergent or denaturant solutions, may be achieved.  相似文献   

7.
Genes coding for putative RegA, RegB, and SenC homologues were identified and characterized in the purple nonsulfur photosynthetic bacteria Rhodovulum sulfidophilum and Roseobacter denitrificans, species that demonstrate weak or no oxygen repression of photosystem synthesis. This additional sequence information was then used to perform a comparative analysis with previously sequenced RegA, RegB, and SenC homologues obtained from Rhodobacter capsulatus and Rhodobacter sphaeroides. These are photosynthetic bacteria that exhibit a high level of oxygen repression of photosystem synthesis controlled by the RegA-RegB two-component regulatory system. The response regulator, RegA, exhibits a remarkable 78.7 to 84.2% overall sequence identity, with total conservation within a putative helix-turn-helix DNA-binding motif. The RegB sensor kinase homologues also exhibit a high level of sequence conservation (55.9 to 61.5%) although these additional species give significantly different responses to oxygen. A Rhodovulum sulfidophilum mutant lacking regA or regB was constructed. These mutants produced smaller amounts of photopigments under aerobic and anaerobic conditions, indicating that the RegA-RegB regulon controls photosynthetic gene expression in this bacterium as it does as in Rhodobacter species. Rhodobacter capsulatus regA- or regB-deficient mutants recovered the synthesis of a photosynthetic apparatus that still retained regulation by oxygen tension when complemented with reg genes from Rhodovulum sulfidophilum and Roseobacter denitrificans. These results suggest that differential expression of photosynthetic genes in response to aerobic and anaerobic growth conditions is not the result of altered redox sensing by the sensor kinase protein, RegB.  相似文献   

8.
The three-dimensional structure of the mitochondrial cytochrome bc1 complex suggests that movement of the extramembrane domain (head) of the Rieske iron-sulfur protein (ISP) may play an important role in electron transfer. Such movement requires flexibility in the neck region of ISP, since the head and transmembrane domains of the protein are rather rigid. To test this hypothesis, Rhodobacter sphaeroides mutants expressing His-tagged cytochrome bc1 complexes with cysteine substitution at various positions in the ISP neck (residues 39-48) were generated and characterized. The mutants with a single cysteine substitution at Ala42 or Val44 and a double cysteine substitution at Val44 and Ala46 (VQA-CQC) or at Ala42 and Ala46 (ADVQA-CDVQC) have photosynthetic growth rates comparable with that of complement cells. Chromatophore membrane and intracytoplasmic membrane (ICM) prepared from these mutants have cytochrome bc1 complex activity similar to that in the complement membranes, indicating that flexibility of the neck region of ISP was not affected by these cysteine substitutions. Mutants with a double cysteine substitution at Ala42 and Val44 (ADV-CDC) or at Pro40 and Ala42 (PSA-CSC) have a retarded (50%) or no photosynthetic growth rate, respectively. The ADV-CDC or PSA-CSC mutant ICM contains 20 or 0% of the cytochrome bc1 complex activity found in the complement ICM. However, activity can be restored by the treatment with beta-mercaptoethanol (beta-ME). The restored activity is diminished upon removal of beta-ME but is retained if the beta-ME-treated membrane is treated with the sulfhydryl reagent N-ethylmaleimide or p-chloromercuribenzoic acid. These results indicate that the loss of bc1 complex activity in the ADV-CDC or PSA-CSC mutant membranes is due to disulfide bond formation, which increases the rigidity of ISP neck and, in turn, decreases the mobility of the head domain. Using the conditions developed for the isolation of His-tagged complement cytochrome bc1 complex, a two-subunit complex (cytochromes b and c1) is obtained from all of the double cysteine-substituted mutants. This suggests that introduction of two cysteines in the neck region of ISP weakens the interactions between cytochromes b, ISP, and subunit IV.  相似文献   

9.
To enable metal affinity purification of cytochrome c oxidase reconstituted into phospholipid vesicles, a histidine-tag was engineered onto the C-terminal end of the Rhodobacter sphaeroides cytochrome c oxidase subunit II. Characterization of the natively processed wildtype oxidase and artificially processed forms (truncated with and without a his-tag) reveals Km values for cytochrome c that are 6-14-fold higher for the truncated and his-tagged forms than for the wildtype. This lowered ability to bind cytochrome c indicates a previously undetected role for the C-terminus in cytochrome c binding and is mimicked by reduced affinity for an FPLC anion exchange column. The elution profiles and kinetics indicate that the removal of 16 amino acids from the C-terminus, predicted from the known processing site of the Paracoccus denitrificans oxidase, does not produce the same enzyme as the native processing reaction. MALDI-TOF MS data show the true C-terminus of subunit II is at serine 290, three amino acids longer than expected. When the his-tagged form is reconstituted into lipid vesicles and further purified by metal affinity chromatography, significant improvement is observed in proton pumping analysis by the stopped-flow method. The improved kinetic results are attributed to a homogeneous, correctly oriented vesicle population with higher activity and less buffering from extraneous lipids.  相似文献   

10.
A highly active, large-scale preparation of ubiquinol:cytochrome c2 oxidoreductase (EC 1.10.2.2; cytochrome bc1 complex) has been obtained from Rhodobacter sphaeroides. The enzyme was solubilized from chromatophores by using dodecyl maltoside in the presence of glycerol and was purified by anion-exchange and gel filtration chromatography. The procedure yields 35 mg of pure bc1 complex from 4.5 g of membrane protein, and its consistently results in an enzyme preparation that catalyzes the reduction of horse heart cytochrome c with a turnover of 250-350 (mumol of cyt c reduced).(mumol of cyt c1)-1.s-1. The turnover number is at least double that of the best preparation reported in the literature [Ljungdahl, P. O., Pennoyer, J. D., Robertson, D. C., & Trumpower, B. L. (1987) Biochim. Biophys. Acta 891, 227-241]. The scale is increased 25-fold, and the yield is markedly improved by using this protocol. Four polypeptide subunits were observed by SDS-PAGE, with Mr values of 40K, 34K, 24K, and 14K. N-Terminal amino acid sequences were obtained for cytochrome c1, the iron-sulfur protein subunit, and for cytochrome b and were identical with the expected protein sequences deduced from the DNA sequence of the fbc operon, with the exceptions that a 22-residue fragment is processed off of the N-terminus of cytochrome c1 and the N-terminal methionine residue is cleaved off both the b cytochrome and iron-sulfur protein subunits. Western blotting experiments indicate that subunit IV is not a contaminating light-harvesting complex polypeptide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The Rhodobacter sphaeroides gene encoding subunit IV of the cytochrome b-c1 complex (fbcQ) was cloned and sequenced. The fbcQ cistron is 372 base pairs long and encodes 124 amino acid residues. The molecular mass of subunit IV, deduced from the nucleotide sequence, is 14,384 Da. A hydropathy plot of the predicted amino acid sequence revealed only one transmembrane helix; it is near the C-terminal end. The 3-azido-2-methyl-5-methoxy-6-(3,7-dimethyl[3H]octyl)-1,4-benzoquinone ([3H]azido-Q)-labeled subunit IV was isolated from the [3H]-azido-Q-treated cytochrome b-c1 complex. A ubiquinone-binding peptide was obtained by digesting the labeled subunit IV with V8 protease followed by high performance liquid chromatography separation. Amino acid analysis and partial N-terminal sequencing of this ubiquinone-binding peptide revealed that it corresponded to residues 77-124 of subunit IV. Based on the hydropathy profile and predicted tendency to form alpha-helices and beta-sheets, we propose a structural model for subunit IV. In this model the ubiquinone-binding domain is located near the surface of the membrane.  相似文献   

12.
Cytochrome bc(1) complex catalyzes the reaction of electron transfer from ubiquinol to cytochrome c (or cytochrome c(2)) and couples this reaction to proton translocation across the membrane. Crystallization of the Rhodobacter sphaeroides bc(1) complex resulted in crystals containing only three core subunits. To mitigate the problem of subunit IV being dissociated from the three-subunit core complex during crystallization, we recently engineered an R. sphaeroides mutant in which the N-terminus of subunit IV was fused to the C-terminus of cytochrome c(1) with a 14-glycine linker between the two fusing subunits, and a 6-histidine tag at the C-terminus of subunit IV (c(1)-14Gly-IV-6His). The purified fusion mutant complex shows higher electron transfer activity, more structural stability, and less superoxide generation as compared to the wild-type enzyme. Preliminary crystallization attempts with this mutant complex yielded crystals containing four subunits and diffracting X-rays to 5.5? resolution.  相似文献   

13.
In the widely studied purple bacterium Rhodobacter sphaeroides, a small transmembrane protein, named PufX, is required for photosynthetic growth and is involved in the supramolecular dimeric organization of the core complex. We performed a structural and functional analysis of the photosynthetic apparatus of Rhodobacter veldkampii, a related species which evolved independently. Time-resolved optical spectroscopy of R. veldkampii chromatophores showed that the reaction center shares with R. sphaeroides spectral and redox properties and interacts with a cytochrome bc(1) complex through a Q-cycle mechanism. Kinetic analysis of flash-induced cytochrome b(561) reduction indicated a fast delivery of the reduced quinol produced by the reaction center to the cytochrome bc(1) complex. A core complex, along with two light-harvesting LH2 complexes significantly different in size, was purified and analyzed by sedimentation, size exclusion chromatography, mass spectroscopy, and electron microscopy. A PufX subunit identified by MALDI-TOF was found to be associated with the core complex. However, as shown by sedimentation and single-particle analysis by electron microscopy, the core complex is monomeric, suggesting that in R. veldkampii, PufX is involved in the photosynthetic growth but is unable to induce the dimerization of the core complex.  相似文献   

14.
The bax-type cytochrome c oxidase from Thermus thermophilus is known as a two subunit enzyme. Deduced from the crystal structure of this enzyme, we discovered the presence of an additional transmembrane helix "subunit IIa" spanning the membrane. The hydrophobic N-terminally blocked protein was isolated in high yield using high-performance liquid chromatography. Its complete amino acid sequence was determined by a combination of automated Edman degradation of both the deformylated and the cyanogen bromide cleaved protein and automated C-terminal sequencing of the native protein. The molecular mass of 3,794 Da as determined by MALDI-MS and by ESI requires the N-terminal methionine to be formylated and is in good agreement with the value calculated from the formylmethionine containing sequence (3,766.5 Da + 28 Da = 3,794.5 Da). This subunit consits of 34 residues forming one helix across the membrane (Lys5-Ala34), which corresponds in space to the first transmembrane helix of subunit II of the cytochrome c oxidases from Paracoccus denitrificans and bovine heart, however, with opposite polarity. It is 35% identical to subunit IV of the ba3-cytochrome oxidase from Natronobacterium pharaonis. The open reading frame encoding this new subunit IIa (cbaD) is located upstream of cbaB in the same operon as the genes for subunit I (cbaA) and subunit II (cbaB).  相似文献   

15.
The PufX polypeptide is an integral component of some photosynthetic bacterial reaction center-light harvesting 1 (RC-LH1) core complexes. Many aspects of the structure of PufX are unresolved, including the conformation of its long membrane-spanning helix and whether C-terminal processing occurs. In the present report, NMR data recorded on the Rhodobacter sphaeroides PufX in a detergent micelle confirmed previous conclusions derived from equivalent data obtained in organic solvent, that the α-helix of PufX adopts a bent conformation that would allow the entire helix to reside in the membrane interior or at its surface. In support of this, it was found through the use of site-directed mutagenesis that increasing the size of a conserved glycine on the inside of the bend in the helix was not tolerated. Possible consequences of this bent helical structure were explored using a series of N-terminal deletions. The N-terminal sequence ADKTIFNDHLN on the cytoplasmic face of the membrane was found to be critical for the formation of dimers of the RC-LH1 complex. It was further shown that the C-terminus of PufX is processed at an early stage in the development of the photosynthetic membrane. A model in which two bent PufX polypeptides stabilise a dimeric RC-LH1 complex is presented, and it is proposed that the N-terminus of PufX from one half of the dimer engages in electrostatic interactions with charged residues on the cytoplasmic surface of the LH1α and β polypeptides on the other half of the dimer.  相似文献   

16.
We report on the isolation, purification and functional characterization of a soluble c-type cytochrome from light-grown cells of the purple phototroph Rhodoferax fermentans. This cytochrome is basic (pI = 8), has a molecular mass of 12 kDa, and is characterized by a midpoint reduction potential of +285 mV. Partial analysis of the N-terminus amino-acid sequence shows a high similarity with cytochromes of c8 type (formerly called Pseudomonas cytochrome c-551 type). Time-resolved spectrophotometric studies show that this cytochrome c8 reduces the tetraheme subunit of the photosynthetic reaction center, in a fast (sub-ms) and a slow (ms) phase. Competition experiments in the presence of both cytochrome c8 and high potential iron-sulfur protein (HiPIP), isolated from the same microorganism, show that cytochrome c8 oxidation is decreased upon addition of HiPIP. These observations suggest that cytochrome c8 and HiPIP might play alternative roles in the photosynthetic electron flow of Rhodoferax fermentans.  相似文献   

17.
The nucleotide sequence of the puf operon, which contains the genes encoding the B870 light-harvesting protein and the reaction center complex of the purple photosynthetic bacterium, Rhodovulum sulfidophilum, was determined. The operon, which consisted of six genes, pufQ, pufB, pufA, pufL, pufM, and pufC, is a new variety in photosynthetic bacteria in the sense that pufQ and pufC coexist. The amino acid sequence of the cytochrome subunit of the reaction center deduced from the pufC sequence revealed that this cytochrome contains only three possible heme-binding motifs; the heme-1-binding motif of the corresponding tetraheme cytochrome subunits was not present. This is the first exception of the "tetraheme" cytochrome family in purple bacteria and green filamentous bacteria. The pufC sequence also revealed that the sixth axial ligands to heme-1 and heme-2 irons were not present in the cytochrome either. This cytochrome was actually detected in membrane preparation as a 43-kDa protein and shown to associate functionally with the photosynthetic reaction center as the immediate electron donor to the photo-oxidized special pair of bacteriochlorophyll. This new cytochrome should be useful for studies on the role of each heme in the cytochrome subunit of the bacterial reaction center and the evolution of proteins in photosynthetic electron transfer systems.  相似文献   

18.
The amino acid sequence of respiratory syncytial virus fusion protein (Fo) was deduced from the sequence of a partial cDNA clone of mRNA and from the 5' mRNA sequence obtained by primer extension and dideoxysequencing. The encoded protein of 574 amino acids is extremely hydrophobic and has a molecular weight of 63371 daltons. The site of proteolytic cleavage within this protein was accurately mapped by determining a partial amino acid sequence of the N-terminus of the larger subunit (F1) purified by radioimmunoprecipitation using monoclonal antibodies. Alignment of the N-terminus of the F1 subunit within the deduced amino acid sequence of Fo permitted us to identify a sequence of lys-lys-arg-lys-arg-arg at the C-terminus of the smaller N-terminal F2 subunit that appears to represent the cleavage/activation domain. Five potential sites of glycosylation, four within the F2 subunit, were also identified. Three extremely hydrophobic domains are present in the protein; a) the N-terminal signal sequence, b) the N-terminus of the F1 subunit that is analogous to the N-terminus of the paramyxovirus F1 subunit and the HA2 subunit of influenza virus hemagglutinin, and c) the putative membrane anchorage domain near the C-terminus of F1.  相似文献   

19.
The complete primary structure of an unusual soluble cytochrome c isolated from the obligate methylotrophic bacterium Methylophilus methylotrophus has been determined to contain 124 amino acids and to have an average molecular mass of 14293.0 Da. The sequence has two unusual features: firstly, the location of the heme-binding cysteines is far downstream from the N-terminus, namely at positions 49 and 52; secondly, an extra pair of cysteine residues is present near the C-terminus. In both respects, cytochrome c" is similar to the oxygen-binding heme protein SHP from the purple phototrophic bacterium Rhodobacter sphaeroides. In contrast to SHP, cytochrome c" changes from low-spin to high-spin upon reduction, due to dissociation of a sixth heme ligand histidine which is identified as His-95 by analogy to the class I cytochromes c. The distance of His-95 from the heme (41 residues) and the presence of certain consensus residues suggests that cytochrome c" is the second example of a variant class I cytochrome c.  相似文献   

20.
The complete sequence of Bacillus pasteurii cytochrome c-553 was determined by standard methods of Edman degradation of overlapping peptides combined with mass spectrometry. The protein contains 92 residues and a single heme-binding site. It is most similar to Bacillus licheniformis, Bacillus PS3, and Bacillus subtilis cytochromes c-551, which are lipoproteins that are partially solubilized through proteolytic cleavage of the N-terminal diacyl-glyceryl-cysteine membrane anchor. The high yield of the B. pasteurii cytochrome c-553, together with evidence that shorter forms of the cytochrome occur in the mixture of otherwise pure protein, suggests that the membrane anchor is very susceptible to proteolysis and that the soluble form of the cytochrome is therefore released from the membrane upon cell breakage. A sequence-based calculation of the protein secondary structure suggests the presence of a typical cytochrome helical fold with a random-coil N-terminus tail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号