共查询到20条相似文献,搜索用时 18 毫秒
1.
2.
3.
4.
? The cell and developmental biology of zygotic embryogenesis in the model legume Medicago truncatula has received little attention. We studied M. truncatula embryogenesis from embryo sac until cotyledon maturation, including oil and protein body biogenesis. ? We characterized embryo development using light and electron microscopy, measurement of protein and lipid fatty acid accumulation and by profiling the expression of key seed storage genes. ? Embryo sac development in M. truncatula is of the Polygonum type. A distinctive multicellular hypophysis and suspensor develops before the globular stage and by the early cotyledon stage, the procambium connects the developing apical meristems. In the storage parenchyma of cotyledons, ovoid oil bodies surround protein bodies and the plasma membrane. Four major lipid fatty acids accumulate as cotyledons develop, paralleling the expression of OLEOSIN and the storage protein genes, VICILIN and LEGUMIN. ? Zygotic embryogenesis in M. truncatula features the development of a distinctive multicellular hypophysis and an endopolyploid suspensor with basal transfer cell. A clear procambial connection between the apical meristems is evident and there is a characteristic arrangement of oil bodies in the cotyledons and radicle. Our data help link embryogenesis to the genetic regulation of oil and protein body biogenesis in legume seed. 相似文献
5.
Differential expression within the glutamine synthetase gene family of the model legume Medicago truncatula. 总被引:1,自引:1,他引:1 下载免费PDF全文
The glutamine synthetase (GS) gene family of Medicago truncatula Gaertn. contains three genes related to cytosolic GS (MtGSa, MtGSb, and MtGSc), although one of these (MtGSc) appears not to be expressed. Sequence analysis suggests that the genes are more highly conserved interspecifically rather than intraspecifically: MtGSa and MtGSb are more similar to their homologs in Medicago sativa and Pisum sativum than to each other. Studies in which gene-specific probes are used show that both MtGSa and MtGSb are induced during symbiotic root nodule development, although not coordinately. MtGSa is the most highly expressed GS gene in nodules but is also expressed to lower extents in a variety of other organs. MtGSb shows higher levels of expression in roots and the photosynthetic cotyledons of seedlings than in nodules or other organs. In roots, both genes are expressed in the absence of an exogenous nitrogen source. However the addition of nitrate leads to a short-term, 2- to 3-fold increase in the abundance of both mRNAs, and the addition of ammonium leads to a 2-fold increase in MtGSb mRNA. The nitrogen supply, therefore, influences the expression of the two genes in roots, but it is clearly not the major effector of their expression. In the discussion section, the expression of the GS gene family of the model legume M. truncatula is compared to those of other leguminous plants. 相似文献
6.
T-DNA tagging in the model legume Medicago truncatula allows efficient gene discovery 总被引:3,自引:0,他引:3
Scholte Marije d'Erfurth Isabelle Rippa Sonia Mondy Samuel Cosson Viviane Durand Patricia Breda Colette Trinh Hanh Rodriguez-Llorente Ignacio Kondorosi Eva Schultze Michael Kondorosi Adam Ratet Pascal 《Molecular breeding : new strategies in plant improvement》2002,10(4):203-215
The annual legume Medicago truncatula has been proposed as a model plant to study various aspects of legume biology including rhizobial and mycorrhizal symbiosis because it is well suited for the genetic analysis of these processes . To facilitate the characterization of M. truncatula genes participating in various developmental processes we have initiated an insertion mutagenesis program in this plant using three different T-DNAs as tags. To investigate which type of vector is the most suitable for mutagenesis we compared the behavior of these T-DNAs. One T-DNA vector was a derivative of pBin19 and plant selection was based on kanamycin resistance. The two other vectors carried T-DNA conferring Basta resistance in the transgenic plants. For each T-DNA type, we determined the copy number in the transgenic lines, the structure of the T-DNA loci and the sequences of the integration sites. The T-DNA derived from pBin19 generated complex T-DNA insertion patterns. The two others generally gave single copy T-DNA inserts that could result in gene fusions for the pGKB5 T-DNA. Analysis of the T-DNA borders revealed that several M. truncatula genes were tagged in these transgenic lines and in vivo gus fusions were also obtained. These results demonstrate that T-DNA tagging can efficiently be used in M. truncatula for gene discovery. 相似文献
7.
Many species of rhizobial bacteria can invade their plant hosts and induce development of symbiotic nitrogen-fixing nodules only if they are able to produce an acidic exopolysaccharide (EPS) with certain structural and molecular weight characteristics.1–3 Sinorhizobium meliloti that produces the functional form of the exopolysaccharide succinoglycan induces formation of invasion structures called infection threads in the root hair cells of its plant hosts alfalfa and Medicago truncatula. However, S. meliloti mutants that cannot produce succinoglycan are not able to induce infection thread formation, resulting in an early arrest of nodule development and in nitrogen starvation of the plant. Mounting evidence has suggested that succinoglycan acts as a signal to these host plants to permit the entry of S. meliloti. Now, our microarray screen and functional category analysis of differentially-expressed genes show that M. truncatula plants inoculated with wild type S. meliloti receive a signal to increase their translation capacity, alter their metabolic activity and prepare for invasion, while those inoculated with a succinoglycan-deficient mutant do not receive this signal, and also more strongly express plant defense genes.Key words: nitrogen fixation, nodule, succinoglycan, microarray, legume, rhizobial bacteria, Sinorhizobium meliloti, Medicago truncatula, infection thread, root hair 相似文献
8.
9.
Charrier A Planchet E Cerveau D Gimeno-Gilles C Verdu I Limami AM Lelièvre E 《Planta》2012,236(2):567-577
The impact of Medicago truncatula stress-associated protein gene (MtSAP1) overexpression has been investigated in Nicotiana tabacum transgenic seedlings. Under optimal conditions, transgenic lines overexpressing MtSAP1 revealed better plant development and higher chlorophyll content as compared to wild type seedlings. Interestingly, transgenic lines showed a stronger accumulation of nitric oxide (NO), a signaling molecule involved in growth and development processes. This NO production seemed to be partially nitrate reductase dependent. Due to the fact that NO has been also reported to play a role in tolerance acquisition of plants to abiotic stresses, the responses of MtSAP1 overexpressors to osmotic and salt stress have been studied. Compared to the wild type, transgenic lines were less affected in their growth and development. Moreover, NO content in MtSAP1 overexpressors was always higher than that detected in wild seedlings under stress conditions. It seems that this better tolerance induced by MtSAP1 overexpression could be associated with this higher NO production that would enable seedlings to reach a high protection level to prepare them to cope with abiotic stresses. 相似文献
10.
11.
d'Erfurth I Cosson V Eschstruth A Lucas H Kondorosi A Ratet P 《The Plant journal : for cell and molecular biology》2003,34(1):95-106
The tobacco element, Tnt1, is one of the few active retrotransposons in plants. Its transposition is activated during protoplast culture in tobacco and tissue culture in the heterologous host Arabidopsis thaliana. Here, we report its transposition in the R108 line of Medicago truncatula during the early steps of the in vitro transformation-regeneration process. Two hundred and twenty-five primary transformants containing Tnt1 were obtained. Among them, 11.2% contained only transposed copies of the element, indicating that Tnt1 transposed very early and efficiently during the in vitro transformation process, possibly even before the T-DNA integration. The average number of insertions per transgenic line was estimated to be about 15. These insertions were stable in the progeny and could be separated by segregation. Inspection of the sequences flanking the insertion sites revealed that Tnt1 had no insertion site specificity and often inserted in genes (one out of three insertions). Thus, our work demonstrates the functioning of an efficient transposable element in leguminous plants. These results indicate that Tnt1 can be used as a powerful tool for insertion mutagenesis in M. truncatula. 相似文献
12.
Karine Loridon Concetta Burgarella Nathalie Chantret Frédéric Martins Jérôme Gouzy Jean‐Marie Prospéri Joëlle Ronfort 《Molecular ecology resources》2013,13(1):84-95
Extensive genomic resources are available in the model legume Medicago truncatula. Here, we present the discovery and design of the first array of single‐nucleotide polymorphism (SNP) markers in M. truncatula through large‐scale Sanger resequencing of genomic fragments spanning the genome, in a diverse panel of 16 M. truncatula accessions. Both anonymous fragments and fragments targeting candidate genes for flowering phenology and symbiosis were surveyed for nucleotide variation in almost 230 kb of unique genomic regions. A set of 384 SNP markers was designed for an Illumina's GoldenGate assay, genotyped on a collection of 192 inbred lines (CC192) representing the geographical range of the species and used to survey the diversity of two natural populations. Finally, 86% of the tested SNPs were of high quality and exhibited polymorphism in the CC192 collection. Even at the population level, we detected polymorphism for more than 50% of the selected SNPs. Analysis of the allele frequency spectrum in the CC192 showed a reduced ascertainment bias, mostly limited to very rare alleles (frequency <0.01). The substantial polymorphism detected at the species and population levels, the high marker quality and the potential to survey large samples of individuals make this set of SNP markers a valuable tool to improve our understanding of the effect of demographic and selective factors that shape the natural genetic diversity within the selfing species Medicago truncatula. 相似文献
13.
14.
Zhou C Han L Pislariu C Nakashima J Fu C Jiang Q Quan L Blancaflor EB Tang Y Bouton JH Udvardi M Xia G Wang ZY 《Plant physiology》2011,157(3):1483-1496
15.
Morère-Le Paven MC Viau L Hamon A Vandecasteele C Pellizzaro A Bourdin C Laffont C Lapied B Lepetit M Frugier F Legros C Limami AM 《Journal of experimental botany》2011,62(15):5595-5605
Primary root growth in the absence or presence of exogenous NO(3)(-) was studied by a quantitative genetic approach in a recombinant inbred line (RIL) population of Medicago truncatula. A quantitative trait locus (QTL) on chromosome 5 appeared to be particularly relevant because it was seen in both N-free medium (LOD score 5.7; R(2)=13.7) and medium supplied with NO(3)(-) (LOD score, 9.5; R(2)=21.1) which indicates that it would be independent of the general nutritional status. Due to its localization exactly at the peak of this QTL, the putative NRT1-NO(3)(-) transporter (Medtr5g093170.1), closely related to Arabidopsis AtNRT1.3, a putative low-affinity nitrate transporter, appeared to be a significant candidate involved in the control of primary root growth and NO(3)(-) sensing. Functional characterization in Xenopus oocytes using both electrophysiological and (15)NO(3)(-) uptake approaches showed that Medtr5g093170.1, named MtNRT1.3, encodes a dual-affinity NO(3)(-) transporter similar to the AtNRT1.1 'transceptor' in Arabidopsis. MtNRT1.3 expression is developmentally regulated in roots, with increasing expression after completion of germination in N-free medium. In contrast to members of the NRT1 superfamily characterized so far, MtNRT1.3 is environmentally up-regulated by the absence of NO(3)(-) and down-regulated by the addition of the ion to the roots. Split-root experiments showed that the increased expression stimulated by the absence of NO(3)(-) was not the result of a systemic signalling of plant N status. The results suggest that MtNRT1.3 is involved in the response to N limitation, which increases the ability of the plant to acquire NO(3)(-) under N-limiting conditions. 相似文献
16.
Streeter Tania C. Rengel Zdenko Neate Stephen M. Graham Robin D. 《Plant and Soil》2001,228(2):233-242
The effect of Zn fertilisation on tolerance of Medicago truncatula to infection by the root-rotting pathogen Rhizoctonia solani (AG 8) was studied in a field survey and in two experiments in controlled conditions. From the field survey, the concentration of Zn in the shoots of medics was found to be inversely related to the severity of disease on the root. Overall, the addition of Zn to Zn-deficient soil in controlled environment experiments resulted in reduced yield loss in the presence of R. solani, a reduction in disease score and no change in the concentration of nutrients in the shoots. However, under Zn deficiency, increasing levels of added R. solani resulted in significant yield loss, an increase in disease score and a reduction in concentration of Zn in the roots. This occurred despite a decrease in the number of infection sites caused by the fungus on the root and a lower amount of R. solani DNA extracted in medics deficient in Zn compared with plants supplied with Zn. While plants supplied with Zn were able to maintain a stable concentration of Zn in the shoots, the concentration of Zn in the roots also declined with increasing levels of R. solani. In conclusion, Zn application does not directly inhibit infection by R. solani, nor reduce its pathogenicity, but it does strongly increase root growth. The net result is that Zn-sufficient plants are more tolerant to the effects of root pruning by the fungus than Zn-deficient plants. 相似文献
17.
Limami AM Glévarec G Ricoult C Cliquet JB Planchet E 《Journal of experimental botany》2008,59(9):2325-2335
The modulation of primary nitrogen metabolism by hypoxic stress was studied in young Medicago truncatula seedlings. Hypoxic seedlings were characterized by the up-regulation of glutamate dehydrogenase 1 (GDH1) and mitochondrial alanine aminotransferase (mAlaAT), and down-regulation of glutamine synthetase 1b (GS1b), NADH-glutamate synthase (NADH-GOGAT), glutamate dehydrogenase 3 (GDH3), and isocitrate dehydrogenase (ICDH) gene expression. Hypoxic stress severely inhibited GS activity and stimulated NADH-GOGAT activity. GDH activity was lower in hypoxic seedlings than in the control, however, under either normoxia or hypoxia, the in vivo activity was directed towards glutamate deamination. (15)NH(4) labelling showed for the first time that the adaptive reaction of the plant to hypoxia consisted of a concerted modulation of nitrogen flux through the pathways of both alanine and glutamate synthesis. In hypoxic seedlings, newly synthesized (15)N-alanine increased and accumulated as the major amino acid, asparagine synthesis was inhibited, while (15)N-glutamate was synthesized at a similar rate to that in the control. A discrepancy between the up-regulation of GDH1 expression and the down-regulation of GDH activity by hypoxic stress highlighted for the first time the complex regulation of this enzyme by hypoxia. Higher rates of glycolysis and ethanol fermentation are known to cause the fast depletion of sugar stores and carbon stress. It is proposed that the expression of GDH1 was stimulated by hypoxia-induced carbon stress, while the enzyme protein might be involved during post-hypoxic stress contributing to the regeneration of 2-oxoglutarate via the GDH shunt. 相似文献
18.
Functional mapping in pea, as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula 总被引:1,自引:0,他引:1
Aubert G Morin J Jacquin F Loridon K Quillet MC Petit A Rameau C Lejeune-Hénaut I Huguet T Burstin J 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2006,112(6):1024-1041
The identification of the molecular polymorphisms giving rise to phenotypic trait variability—both quantitative and qualitative—is
a major goal of the present agronomic research. Various approaches such as positional cloning or transposon tagging, as well
as the candidate gene strategy have been used to discover the genes underlying this variation in plants. The construction
of functional maps, i.e. composed of genes of known function, is an important component of the candidate gene approach. In
the present paper we report the development of 63 single nucleotide polymorphism markers and 15 single-stranded conformation
polymorphism markers for genes encoding enzymes mainly involved in primary metabolism, and their genetic mapping on a composite
map using two pea recombinant inbred line populations. The complete genetic map covers 1,458 cM and comprises 363 loci, including
a total of 111 gene-anchored markers: 77 gene-anchored markers described in this study, 7 microsatellites located in gene
sequences, 16 flowering time genes, the Tri gene, 5 morphological markers, and 5 other genes. The mean spacing between adjacent markers is 4 cM and 90% of the markers
are closer than 10 cM to their neighbours. We also report the genetic mapping of 21 of these genes in Medicago truncatula and add 41 new links between the pea and M. truncatula maps. We discuss the use of this new composite functional map for future candidate gene approaches in pea. 相似文献
19.
20.
Renard M Alkhalfioui F Schmitt-Keichinger C Ritzenthaler C Montrichard F 《Plant physiology》2011,155(3):1113-1126
Thioredoxins (Trxs) h, small disulfide reductases, and NADP-thioredoxin reductases (NTRs) have been shown to accumulate in seeds of different plant species and play important roles in seed physiology. However, little is known about the identity, properties, and subcellular location of Trx h isoforms that are abundant in legume seeds. To fill this gap, in this work, we characterized the Trx h family of Medicago truncatula, a model legume, and then explored the activity and localization of Trx h isoforms accumulating in seeds. Twelve Trx h isoforms were identified in M. truncatula. They belong to the groups previously described: h1 to h3 (group I), h4 to h7 (group II), and h8 to h12 (group III). Isoforms of groups I and II were found to be reduced by M. truncatula NTRA, but with different efficiencies, Trxs of group II being more efficiently reduced than Trxs of group I. In contrast, their insulin disulfide-reducing activity varies greatly and independently of the group to which they belong. Furthermore, Trxs h1, h2, and h6 were found to be present in dry and germinating seeds. Trxs h1 and, to a lesser extent, h2 are abundant in both embryonic axes and cotyledons, while Trx h6 is mainly present in cotyledons. Thus, M. truncatula seeds contain distinct isoforms of Trx h that differ in spatial distribution and kinetic properties, suggesting that they play different roles. Because we show that Trx h6 is targeted to the tonoplast, the possible role of this isoform during germination is finally discussed. 相似文献