首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
A set of lambda-transducing phages carrying transfer (tra) genes has been isolated from an abnormal lysogen in which a lambda prophage was inserted into the traY gene of Flac. These have been characterized genetically for complementation of Flac tra and finP point mutants and for the presence of oriT. Studies of tra gene expression during lambda repression showed that tra genes on the transducing phages were expressed from the lambda PL promoter as well as from the transfer promoters when these were present. The molecular weights of the traM (14,000) and traJ (23,500) proteins were measured after infection of ultraviolet-irradiated cells with one of the phages, ED lambda 102, and overproduction of the traJ protein upon induction of an ED lambda 102 lysogen was demonstrated. A proportion of this traJ protein was located in the inner membrane and cytoplasmic fractions of the cell, the majority being in the outer membrane. Physical analysis of the DNA carried by the lambda tra phages by determination of the phage buoyant densities in CsCl, by restriction enzyme digestion and by electron microscope heteroduplex analysis, was used to define the DNA segments encoding the tra functions. Correlation of the physical and genetical data improved the positioning of the tra genes within the transfer region. These results were combined with new restriction enzyme cleavage data to construct an improved map of this region.  相似文献   

10.
11.
12.
Site-directed mutagenesis was used to investigate the functions of the traM gene in plasmid R1-mediated bacterial conjugation. Three mutant alleles, a null mutation, a sense mutation and a stop mutation, were recombined back into the R1-16 plasmid, a transfer-derepressed ( finO  ) variant of plasmid R1. The frequency of conjugative transfer of the traM null mutant derivative of R1-16 was 107-fold lower than that of the isogenic parent plasmid, showing the absolute requirement for this gene in conjugative transfer of plasmid R1. Measurements of the abundance of plasmid specified traJ , traA and traM mRNAs, TraM protein levels, and complementation studies indicated that the traM gene of plasmid R1 has at least two functions in conjugation: (i) positive control of transfer gene expression; and (ii) a function in a process distinct from gene expression. Since expression of the negatively autoregulated traM gene is itself affected positively by the expression of the transfer operon genes, this gene constitutes a decisive element within a regulatory circuit that co-ordinates expression of the genes necessary for horizontal DNA transfer. Based on our studies, we present a novel model for the regulation of the transfer genes of plasmid R1 that might also be applicable to other IncF plasmids.  相似文献   

13.
Interaction of integration host factor (IHF) with linear DNA fragments containing the narG promoter region induced an apparent sharp bend in the DNA centered at the IHF-binding site. Binding of NARL-P to two sites adjacent to the IHF site did not induce bending or modify the apparent bending induced by IHF.  相似文献   

14.
15.
Characterization of the oriT region of the IncFV plasmid pED208   总被引:4,自引:2,他引:2  
DNA sequence analysis of a 2.2kb EcoRI-HindIII fragment from pED208, the derepressed form of the IncFV plasmid Folac, revealed sequences highly homologous to the oriT region, traM, and traJ genes of other IncF plasmids. The TraM protein was purified and immunoblots of fractionated cells containing pED208 or Folac showed that TraM was predominantly in the cytoplasm. Using DNA retardation assays and the DNase I footprinting technique, the TraM protein was found to bind to three large motifs in the oriT region: (I) an inverted repeat, (II) two direct repeats, and (III) the traM promoter region. These three footprint regions contained a Hinfl-like sequence (GANTC) that appeared 16 times, spaced 11-12 bp (or multiples thereof) apart, suggesting that TraM protein binds in a complex manner over this entire region.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号