首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Prolactin release is controlled by prolactin-release inhibiting factor (PIF), possibly dopamine, and an unidentified putative hypothalamic prolactin-releasing factor (PRF). Morphine and related opioids may indirectly stimulate prolactin release by inhibiting PIF release and (or) by stimulating putative PRF release. In the present study, we have completely blocked the dopaminergic receptors in normal male rats by pretreatment with a large dose of pimozide (3 mg/kg) to demonstrate if putative PRF has a role in morphine-induced prolactin release. Morphine sulfate (10 mg/kg) was still able to stimulate prolactin release in the rat without any functional dopaminergic PIF receptors. When naloxone (3 mg/kg) was injected 20 min before the morphine in the pimozide-treated rat, plasma prolactin concentration was not affected by morphine indicating that the stimulatory effect of this opioid on prolactin release in the pimozide-pretreated rat was mediated by mu-receptors. We can conclude that morphine can stimulate prolactin release through a mechanism apparently independent of dopaminergic receptors, one possible route being through a putative PRF.  相似文献   

4.
5.
6.
BRCA1 is involved in maintaining genomic integrity and, as a regulator of the G2/M checkpoint, contributes to DNA repair and cell survival. The overexpression of BRCA1 elicits diverse cellular responses including apoptosis due to the stimulation of specific signaling pathways. BRCA1 is normally regulated by protein turnover, but is stabilized by BARD1 which can recruit BRCA1 to the nucleus to form a ubiquitin E3 ligase complex involved in DNA repair or cell survival. Here, we identify BARD1 as a regulator of BRCA1-dependent apoptosis. Using transfected MCF-7 breast cancer cells, we found that BRCA1-induced apoptosis was independent of p53 and was stimulated by BRCA1 nuclear export. Conversely, BARD1 reduced BRCA1-dependent apoptosis by a mechanism involving nuclear sequestration. Regulation of apoptosis by BARD1 was reduced by BRCA1 cancer mutations that disrupt Ub ligase function. Transfection of BRCA1 N-terminal peptides that disrupted the cellular BRCA1-BARD1 interaction caused a loss of nuclear BRCA1 that correlated with increased apoptosis in single cell assays, but did not alter localization or expression of endogenous BARD1. Reducing BARD1 levels by siRNA caused a small increase in apoptosis. Our findings identify a novel apoptosis inhibitory function of BARD1 and suggest that nuclear retention of BRCA1-BARD1 complexes contributes to both DNA repair and cell survival.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
BRCA1 gene in breast cancer   总被引:10,自引:0,他引:10  
  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号