首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Microscopic examination of living cells often reveals that cells from some cell strains appear to be in a permanent state of disarray without obvious reason. In all probability such a disorderly state affects cell functioning.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Roy SS  Patra M  Basu T  Dasgupta R  Bagchi A 《Gene》2012,495(1):49-55
Heat-stress to any living cell is known to trigger a universal defense response, called heat-shock response, with rapid induction of tens of different heat-shock proteins. Bacterial heat-shock genes are transcribed by the σ32-bound RNA polymerase instead of the normal σ70-bound RNA polymerase. In this study, the diversity in sequence, variation in secondary structure and function amongst the different functional regions of the proteobacterial σ32 family of proteins, and their phylogenetic relationships have been analyzed. Bacterial σ32 proteins can be subdivided into different functional regions which are referred to as regions 2, 3, and 4. There is a great deal of sequence conservation among the functional regions of proteobacterial σ32 family of proteins though some mutations are also present in these regions. Region 2 is the most conserved one, while region 4 has comparatively more variable sequences. In the present work, we tried to explore the effects of mutations in these regions. Our study suggests that the sequence diversities due to natural mutations in the different regions of proteobacterial σ32 family lead to different functions. So far, this study is the first bioinformatic approach towards the understanding of the mechanistic details of σ32 family of proteins using the protein sequence information only. This study therefore may help in elucidating the hitherto unknown molecular mechanism of the functionalities of σ32family of proteins.  相似文献   

16.
17.
18.
We developed a novel human leukocyte antigen HLA–ABC locus-specific quantitative real-time polymerase chain reaction (PCR) to determine the locus-specific gene expression of HLA–ABC in peripheral blood leukocytes (PBLs, n?=?53), colon mucosa (n?=?15), and larynx mucosa (n?=?15). Laser-assisted tissue microdissection allowed us to study the selected cells without interference from surrounding stroma. We report evidence on the specificity of the technique, describing the HLA–ABC locus-specific gene expression patterns found in the PBLs and two solid tissues studied. PBLs showed a higher gene expression of HLA-B than of HLA-A or HLA-C (p?=?4.7?×?10?10 and p?=?1.6?×?10?6, respectively). In solid tissue, HLA-A and HLA-B gene expressions were similar and HLA-C expression lower. In particular, in larynx mucosa, significant differences were found between HLA-A and HLA-C expressions and between HLA-B and HLA-C expressions (p?=?6.5?×?10?4 and p?=?8.1?×?10?4, respectively). The same differences were observed in colon mucosa, but significance was not reached (p?=?0.08 and p?=?0.06, respectively). Differences in locus-specific regulation may be related to the control of cytotoxic responses of NK and CD8 positive T cells. Gene expression of HLA–ABC specific locus showed no intra-individual variability, but there was a high inter-individual variability. This may result from differences in the expression of common regulatory factors that control HLA–ABC constitutive expression.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号