首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Circadian clocks are pervasive entities that allow organisms to maintain rhythms of approximately 24h, independently of external cues, thereby adapting them to the solar cycle. Recent studies have shown that molecular circadian clocks are important for the proper orchestration of the cell division cycle. For the first time, this provides a framework to understand the interactions between these two evolutionarily linked timers. Here we review the current model of the circadian clock and the molecular methods that can be used to investigate its function. We then map out links to the cell cycle at the cellular level. Furthermore, we review recent progress that has linked dysfunction of the clockwork with the pathogenesis of cancer. Disruption of circadian timing (as occurs in jet-lag, shift work and dementia) thus has far reaching consequences for normal regulation of cell division. The implications of this for the health of a "24-h society" are apparent.  相似文献   

2.
To date, most research in the field of biological rhythms has been performed on nocturnal rodents under laboratory conditions. This research has made much progress in recent years. It is now time to investigate the adaptive value of the studied molecular mechanisms under natural conditions. Here we review relevant studies of rodent activity patterns. We also review a case study of temporal partitioning between spiny mice. We conclude that the response to environmental stimuli, using a system composed of a rigid master circadian oscillator and more flexible mechanisms such as peripheral oscillators with weak coupling, masking responses, and downstream switching mechanisms, is adaptive since it enables an animal to reset its activity phase without the cost of shifting the phase of the entire circadian system. We suggest that these mechanisms play a significant role in determining activity patterns under natural conditions, and are important for understanding the ecology and evolution of activity rhythms.  相似文献   

3.
The periodic light-dark cycle is the dominant environmental synchronizer used by humans to entrain to the geophysical 24-h day. Entrainment is a fundamental property of circadian systems by which the period of the internal clock (tau) is synchronized to the period of the entraining stimuli (T cycle). An important aspect of entrainment in humans is the maintenance of an appropriate phase relationship between the circadian system, the timing of sleep and wakefulness, and environmental time (a.k.a. the phase angle of entrainment) to maintain wakefulness throughout the day and consolidated sleep at night. In this article, we review these concepts and the methods for assessing circadian phase and period in humans, as well as discuss findings on the phase angle of entrainment in healthy adults. We review findings from studies that examine how the phase, intensity, duration, and spectral characteristics of light affect the response of the human biological clock and discuss studies on entrainment in humans, including recent studies of the minimum light intensity required for entrainment. We briefly review conditions and disorders in which failure of entrainment occurs. We provide an integrated perspective on circadian entrainment in humans with respect to recent advances in our knowledge of circadian period and of the effects of light on the biological clock in humans.  相似文献   

4.
生物钟调控机制广泛存在于各种类型的细胞中,控制着细胞代谢的节律性变化.最近的研究发现,NAD+依赖的组蛋白去乙酰化酶Sirt1参与了生物钟调控过程,对维持正常的生物钟节律具有重要作用;另一方面,Sirt1的表达也受到生物钟系统的调控,呈现出昼夜节律性的表达.因此Sirt1能与生物钟进行相互调控,并且这一作用机制很可能广泛参与了不同类型细胞内的信号转导和能量代谢过程.本文总结了Sirt1与生物钟之间相互调控的一些研究进展,对它们之间的分子调控机制进行了概述.  相似文献   

5.
Spatio-temporal coordination of events during cell division is crucial for animal development. In recent years, emerging data have strengthened the notion that tight coupling of cell cycle progression and cell polarity in dividing cells is crucial for asymmetric cell division and ultimately for metazoan development. Although it is acknowledged that such coupling exists, the molecular mechanisms linking the cell cycle and cell polarity machineries are still under investigation. Key cell cycle regulators control cell polarity, and thus influence cell fate determination and/or differentiation, whereas some factors involved in cell polarity regulate cell cycle timing and proliferation potential. The scope of this review is to discuss the data linking cell polarity and cell cycle progression, and the importance of such coupling for asymmetric cell division. Because studies in model organisms such as Caenorhabditis elegans and Drosophila melanogaster have started to reveal the molecular mechanisms of this coordination, we will concentrate on these two systems. We review examples of molecular mechanisms suggesting a coupling between cell polarity and cell cycle progression.  相似文献   

6.
Oscillatory mechanisms are present in most life forms and regulate biological processes periodically. In multicellular organisms where more than one oscillatory mechanism is present, they are organized forming a hierarchical coordinated system even at the cellular level. Here, we focus on the Root Clock, an oscillatory mechanism located at the tip of roots that patterns the spacing of lateral organs through oscillating gene expression. We present a series of recent findings and hypotheses about the cellular mechanisms driving the oscillations, how oscillatory information is transmitted within this clock and similarities with other oscillatory systems. Next, we review principles of communication in other pulsatile mechanisms such as circadian rhythms in plants and mammals, and address the possible communication between plant circadian rhythms and the Root Clock. Finally, we advocate for the use of single-cell approaches to address cell communication, synchronization and integration of external outputs into the Root Clock system.  相似文献   

7.
The turnover measurement of proteins and proteoforms has been largely facilitated by workflows coupling metabolic labeling with mass spectrometry (MS), including dynamic stable isotope labeling by amino acids in cell culture (dynamic SILAC) or pulsed SILAC (pSILAC). Very recent studies including ours have integrated themeasurement of post-translational modifications (PTMs) at the proteome level (i.e., phosphoproteomics) with pSILAC experiments in steady state systems, exploring the link between PTMs and turnover at the proteome-scale. An open question in the field is how to exactly interpret these complex datasets in a biological perspective. Here, we present a novel pSILAC phosphoproteomic dataset which was obtained during a dynamic process of cell starvation using data-independent acquisition MS (DIA-MS). To provide an unbiased “hypothesis-free” analysis framework, we developed a strategy to interrogate how phosphorylation dynamically impacts protein turnover across the time series data. With this strategy, we discovered a complex relationship between phosphorylation and protein turnover that was previously underexplored. Our results further revealed a link between phosphorylation stoichiometry with the turnover of phosphorylated peptidoforms. Moreover, our results suggested that phosphoproteomic turnover diversity cannot directly explain the abundance regulation of phosphorylation during cell starvation, underscoring the importance of future studies addressing PTM site-resolved protein turnover.  相似文献   

8.
9.
斑马鱼生物钟研究进展   总被引:1,自引:0,他引:1  
王明勇  黄国栋  王晗 《遗传》2012,34(9):1133-1143
斑马鱼是生物钟研究领域中一种新兴的脊椎动物模型。文章总结了斑马鱼生物钟研究的一些进展, 以及利用斑马鱼研究生物钟的特点及优势。由于光照和温度作为重要的外部信号在斑马鱼生物钟调节中发挥重要作用, 文章主要就近期光和温度对斑马鱼钟基因及调节通路的研究进行了概述, 最后对斑马鱼生物钟研究的未来提出了展望。  相似文献   

10.
Central functions in the cell are often linked to complex dynamic behaviours, such as sustained oscillations and multistability, in a biochemical reaction network. Determination of the specific mechanisms underlying such behaviours is important, e.g. to determine sensitivity, robustness, and modelling requirements of given cell functions. In this work we adopt a systems approach to the analysis of complex behaviours in intracellular reaction networks, described by ordinary differential equations with known kinetic parameters. We propose to decompose the overall system into a number of low complexity subsystems, and consider the importance of interactions between these in generating specific behaviours. Rather than analysing the network in a state corresponding to the complex non-linear behaviour, we move the system to the underlying unstable steady state, and focus on the mechanisms causing destabilisation of this steady state. This is motivated by the fact that all complex behaviours in unforced systems can be traced to destabilisation (bifurcation) of some steady state, and hence enables us to use tools from linear system theory to qualitatively analyse the sources of given network behaviours. One important objective of the present study is to see how far one can come with a relatively simple approach to the analysis of highly complex biochemical networks. The proposed method is demonstrated by application to a model of mitotic control in Xenopus frog eggs, and to a model of circadian oscillations in Drosophila. In both examples we are able to identify the subsystems, and the related interactions, which are instrumental in generating the observed complex non-linear behaviours.  相似文献   

11.
Large, naturally evolved biomolecular networks typically fulfil multiple functions. When modelling or redesigning such systems, functional subsystems are often analysed independently first, before subsequent integration into larger-scale computational models. In the design and analysis process, it is therefore important to quantitatively analyse and predict the dynamics of the interactions between integrated subsystems; in particular, how the incremental effect of integrating a subsystem into a network depends on the existing dynamics of that network. In this paper we present a framework for simulating the contribution of any given functional subsystem when integrated together with one or more other subsystems. This is achieved through a cascaded layering of a network into functional subsystems, where each layer is defined by an appropriate subset of the reactions. We exploit symmetries in our formulation to exhaustively quantify each subsystem’s incremental effects with minimal computational effort. When combining subsystems, their isolated behaviour may be amplified, attenuated, or be subject to more complicated effects. We propose the concept of mutual dynamics to quantify such nonlinear phenomena, thereby defining the incompatibility and cooperativity between all pairs of subsystems when integrated into any larger network. We exemplify our theoretical framework by analysing diverse behaviours in three dynamic models of signalling and metabolic pathways: the effect of crosstalk mechanisms on the dynamics of parallel signal transduction pathways; reciprocal side-effects between several integral feedback mechanisms and the subsystems they stabilise; and consequences of nonlinear interactions between elementary flux modes in glycolysis for metabolic engineering strategies. Our analysis shows that it is not sufficient to just specify subsystems and analyse their pairwise interactions; the environment in which the interaction takes place must also be explicitly defined. Our framework provides a natural representation of nonlinear interaction phenomena, and will therefore be an important tool for modelling large-scale evolved or synthetic biomolecular networks.  相似文献   

12.
B细胞是体液免疫的重要执行细胞,其活化是机体产生保护性抗体的关键步骤.目前人们对B细胞早期活化的动态分子事件和信号起始机制等仍然未知.本文将重点总结超高清成像技术和高速高分辨率活体成像技术在B细胞领域的应用,这些研究将帮助人们理解B细胞早期活化的机制.本文系列总结了静息态下维持B细胞存活的B细胞受体(B cell receptor,BCR)滋养信号的研究进展,并提出了滋养信号来源的几种可能的模型.描述了抗原刺激导致的BCR活化的信号通路,并重点探讨了成像技术进步带来的关于BCR信号通路起始的机制探索这一免疫学领域的重大问题.结合高速高分辨率活细胞成像技术在免疫学领域的应用,抗原刺激后BCR活化过程中一系列动态变化过程和高级结构的形成能够被实时捕获.此外,还探讨了B细胞记忆性免疫发生的机制,重点阐述了亲和力成熟和BCR亚型转换,尤其是IgG(Immunoglobulin G)型BCR胞内尾巴对快速强烈的记忆性免疫反应的帮助.B细胞活化机制的调节过程发生异常会破坏正常的B细胞稳态平衡和免疫疾病的发生,本文总结抑制性调节受体FcγRIIB(Fcγreceptor IIB)突变与自身免疫病的关系,以及BCR信号通路信号分子突变与B细胞肿瘤的关系,这些研究将加深人们对B细胞免疫疾病的认识和相应医疗手段的改进.  相似文献   

13.
14.
Cairo CW  Golan DE 《Biopolymers》2008,89(5):409-419
Cell surface receptors mediate the exchange of information between cells and their environment. In the case of adhesion receptors, the spatial distribution and molecular associations of the receptors are critical to their function. Therefore, understanding the mechanisms regulating the distribution and binding associations of these molecules is necessary to understand their functional regulation. Experiments characterizing the lateral mobility of adhesion receptors have revealed a set of common mechanisms that control receptor function and thus cellular behavior. The T cell provides one of the most dynamic examples of cellular adhesion. An individual T cell makes innumerable intercellular contacts with antigen presenting cells, the vascular endothelium, and many other cell types. We review here the mechanisms that regulate T cell adhesion receptor lateral mobility as a window into the molecular regulation of these systems, and we present a general framework for understanding the principles and mechanisms that are likely to be common among these and other cellular adhesion systems. We suggest that receptor lateral mobility is regulated via four major mechanisms-reorganization, recruitment, dispersion, and anchoring-and we review specific examples of T cell adhesion receptor systems that utilize one or more of these mechanisms.  相似文献   

15.
S-glutathionylation in protein redox regulation   总被引:5,自引:0,他引:5  
Protein S-glutathionylation, the reversible formation of mixed disulfides between glutathione and low-pKa cysteinyl residues, not only is a cellular response to mild oxidative/nitrosative stress, but also occurs under basal (physiological) conditions. S-glutathionylation has now emerged as a potential mechanism for dynamic, posttranslational regulation of a variety of regulatory, structural, and metabolic proteins. Moreover, substantial recent studies have implicated S-glutathionylation in the regulation of signaling and metabolic pathways in intact cellular systems. The growing list of S-glutathionylated proteins, in both animal and plant cells, attests to the occurrence of S-glutathionylation in cellular response pathways. The existence of antioxidant enzymes that specifically regulate S-glutathionylation would emphasize its importance in modulating protein function, suggesting that this protein modification too might have a role in cell signaling. The continued development of proteomic and analytical methods for disulfide analysis will help us better understand the full extent of the roles these modifications play in the regulation of cell function. In this review, we describe recent breakthroughs in our understanding of the potential role of protein S-glutathionylation in the redox regulation of signal transduction.  相似文献   

16.
Adult stem cells maintain tissue homeostasis by their ability to both self-renew and differentiate to distinct cell types. Multiple signaling pathways have been shown to play essential roles as extrinsic cues in maintaining adult stem cell identity and activity. Recent studies also show dynamic regulation by epigenetic mechanisms as intrinsic factors in multiple adult stem cell lineages. Emerging evidence demonstrates intimate crosstalk between these two mechanisms. Misregulation of adult stem cell activity could lead to tumorigenesis, and it has been proposed that cancer stem cells may be responsible for tumor growth and metastasis. However, it is unclear whether cancer stem cells share commonalities with normal adult stem cells. In this review, we will focus on recent discoveries of epigenetic regulation in multiple adult stem cell lineages. We will also discuss how epigenetic mechanisms regulate cancer stem cell activity and probe the common and different features between cancer stem cells and normal adult stem cells.  相似文献   

17.
18.
Bioluminescence rhythms from cellular reporters have become the most common method used to quantify oscillations in circadian gene expression. These experimental systems can reveal phase and amplitude change resulting from circadian disturbances, and can be used in conjunction with mathematical models to lend further insight into the mechanistic basis of clock amplitude regulation. However, bioluminescence experiments track the mean output from thousands of noisy, uncoupled oscillators, obscuring the direct effect of a given stimulus on the genetic regulatory network. In many cases, it is unclear whether changes in amplitude are due to individual changes in gene expression level or to a change in coherence of the population. Although such systems can be modeled using explicit stochastic simulations, these models are computationally cumbersome and limit analytical insight into the mechanisms of amplitude change. We therefore develop theoretical and computational tools to approximate the mean expression level in large populations of noninteracting oscillators, and further define computationally efficient amplitude response calculations to describe phase-dependent amplitude change. At the single-cell level, a mechanistic nonlinear ordinary differential equation model is used to calculate the transient response of each cell to a perturbation, whereas population-level dynamics are captured by coupling this detailed model to a phase density function. Our analysis reveals that amplitude changes mediated at either the individual-cell or the population level can be distinguished in tissue-level bioluminescence data without the need for single-cell measurements. We demonstrate the effectiveness of the method by modeling experimental bioluminescence profiles of light-sensitive fibroblasts, reconciling the conclusions of two seemingly contradictory studies. This modeling framework allows a direct comparison between in vitro bioluminescence experiments and in silico ordinary differential equation models, and will lead to a better quantitative understanding of the factors that affect clock amplitude.  相似文献   

19.
20.
Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations – similar temporal fluctuation patterns at different time scales. These fractal patterns contain information about health, as many pathological conditions are accompanied by their alteration or absence. In physical systems, such fluctuations are characteristic of critical states on the border between randomness and order, frequently arising from nonlinear feedback interactions between mechanisms operating on multiple scales. Thus, the existence of fractal fluctuations in physiology challenges traditional conceptions of health and disease, suggesting that high levels of integrity and adaptability are marked by complex variability, not constancy, and are properties of a neurophysiological network, not individual components. Despite the subject's theoretical and clinical interest, the neurophysiological mechanisms underlying fractal regulation remain largely unknown. The recent discovery that the circadian pacemaker (suprachiasmatic nucleus) plays a crucial role in generating fractal patterns in motor activity and heart rate sheds an entirely new light on both fractal control networks and the function of this master circadian clock, and builds a bridge between the fields of circadian biology and fractal physiology. In this review, we sketch the emerging picture of the developing interdisciplinary field of fractal neurophysiology by examining the circadian system's role in fractal regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号