首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FtsZ, the bacterial homologue of eukaryotic tubulin, plays a central role in cell division in nearly all bacteria and many archaea. It forms filaments under the cytoplasmic membrane at the division site where, together with other proteins it recruits, it drives peptidoglycan synthesis and constricts the cell. Despite extensive study, the arrangement of FtsZ filaments and their role in division continue to be debated. Here, we apply electron cryotomography to image the native structure of intact dividing cells and show that constriction in a variety of Gram‐negative bacterial cells, including Proteus mirabilis and Caulobacter crescentus, initiates asymmetrically, accompanied by asymmetric peptidoglycan incorporation and short FtsZ‐like filament formation. These results show that a complete ring of FtsZ is not required for constriction and lead us to propose a model for FtsZ‐driven division in which short dynamic FtsZ filaments can drive initial peptidoglycan synthesis and envelope constriction at the onset of cytokinesis, later increasing in length and number to encircle the division plane and complete constriction.  相似文献   

2.
3.
4.
FtsZ is a widely distributed major cytoskeletal protein involved in the archaea and bacteria cell division. It is the most critical component in the division machinery and similar to tubulin in structure and function. Four major roles of FtsZ have been characterized: cell elongation, GTPase, cell division, and bacterial cytoskeleton. FtsZ subunits can be assembled into protofilaments. Mycobacteria consist of a large family of medical and environmental important bacteria, such as M. leprae, M. tuberculosis, the pathogen of leprosy, and tuberculosis. Structure, function, and regulation of mycobacteria FtsZ are summarized here, together with the implication of FtsZ as potential novel drug target for anti-tuberculosis therapeutics.  相似文献   

5.
6.
Several intracellular bacterial pathogens, including species of Listeria, Rickettsia, Shigella, Mycobacteria, and Burkholderia, have evolved mechanisms to exploit the actin polymerization machinery of their hosts to induce actin-based motility, enabling these pathogens to spread between host cells without exposing themselves to the extracellular milieu. Efficient cell-to-cell spread requires directional motility, which the bacteria may achieve by concentrating the effector molecules at one pole of their cell body, thereby restricting polymerization of monomeric actin into actin tails to this pole. The study of the molecular processes involved in the initiation of actin tail formation at the bacterial surface, and subsequent actin-based motility, has provided much insight into the pathogenesis of infections caused by these bacteria and into the cell biology of actin dynamics. Concomitantly, this field of research has provided an opportunity to understand the mechanisms whereby bacteria can achieve a polarized distribution of surface proteins. This review will describe the process of actin-based motility of intracellular bacteria, and the mechanisms by which bacteria can obtain a polarized distribution of their surface proteins.  相似文献   

7.
One mechanism for achieving accurate placement of the cell division machinery is via Turing patterns, where nonlinear molecular interactions spontaneously produce spatiotemporal concentration gradients. The resulting patterns are dictated by cell shape. For example, the Min system of Escherichia coli shows spatiotemporal oscillation between cell poles, leaving a mid‐cell zone for division. The universality of pattern‐forming mechanisms in divisome placement is currently unclear. We examined the location of the division plane in two pleomorphic archaea, Haloferax volcanii and Haloarcula japonica, and showed that it correlates with the predictions of Turing patterning. Time‐lapse analysis of H. volcanii shows that divisome locations after successive rounds of division are dynamically determined by daughter cell shape. For H. volcanii, we show that the location of DNA does not influence division plane location, ruling out nucleoid occlusion. Triangular cells provide a stringent test for Turing patterning, where there is a bifurcation in division plane orientation. For the two archaea examined, most triangular cells divide as predicted by a Turing mechanism; however, in some cases multiple division planes are observed resulting in cells dividing into three viable progeny. Our results suggest that the division site placement is consistent with a Turing patterning system in these archaea.  相似文献   

8.
高等植物质体的分裂   总被引:3,自引:0,他引:3  
质体来源于早期具光合能力的原核生物与原始真核生物的内共生事件。原核起源的蛋白以及真核寄主起源的蛋白共同参与了质体的分裂过程。以原核生物的细胞分裂蛋白为蓝本, 近些年在植物中陆续鉴定出几种主要的原核生物细胞分裂蛋白的同源物, 如FtsZ、MinD和MinE蛋白。然而, 除此之外, 原核细胞大多数分裂相关因子在植物中找不到其同源物, 但却鉴定了许多真核寄主来源的分裂相关蛋白。当前研究的重点是剖析各种质体分裂蛋白协同作用的机制, 业已证明MinD和MinE的协同作用保证了FtsZ(Z)环的正确定位。尽管经典的FtsZ的抑制因子MinC在植物中不存在, 但实验表明ARC3在拟南芥中具有类似MinC的功能。ARC3蛋白与真核起源的蛋白如ARC5、ARTEMIS、FZL和PD环以及其它原核起源的蛋白如ARC6和GC1等共同构成了一个复杂的植物质体分裂调控系统。  相似文献   

9.
质体来源于早期具光合能力的原核生物与原始真核生物的内共生事件。原核起源的蛋白以及真核寄主起源的蛋白共同参与了质体的分裂过程。以原核生物的细胞分裂蛋白为蓝本,近些年在植物中陆续鉴定出几种主要的原核生物细胞分裂蛋白的同源物,如FtsZ、MinD和MinE蛋白。然而,除此之外,原核细胞大多数分裂相关因子在植物中找不到其同源物,但却鉴定了许多真核寄主来源的分裂相关蛋白。当前研究的重点是剖析各种质体分裂蛋白协同作用的机制,业已证明MinD和Mine的协同作用保证了FtsZ(Z)环的正确定位。尽管经典的FtsZ的抑制因子MinC在植物中不存在,但实验表明ARC3在拟南芥中具有类似MinC的功能。ARC3蛋白与真核起源的蛋白如ARC5、ARTEMIS、FZL和PD环以及其它原核起源的蛋白如ARC6和GC1等共同构成了一个复杂的植物质体分裂调控系统。  相似文献   

10.
Enteropathogenic Escherichia coli (EPEC), a leading cause of human infantile diarrhoea, is the prototype for a family of intestinal bacterial pathogens that induce attaching and effacing (A/E) lesions on host cells. A/E lesions are characterized by localized effacement of the brush border of enterocytes, intimate bacterial attachment and pedestal formation beneath the adherent bacteria. As a result of some recent breakthrough discoveries, EPEC has now emerged as a fascinating paradigm for the study of host–pathogen interactions and cytoskeletal rearrangements that occur at the host cell membrane. EPEC uses a type III secretion machinery to attach to epithelial cells, translocating its own receptor for intimate attachment, Tir, into the host cell, which then binds to intimin on the bacterial surface. Studies of EPEC-induced cytoskeletal rearrangements have begun to provide clues as to the mechanisms used by this pathogen to subvert the host cell cytoskeleton and signalling pathways. These findings have unravelled new ways by which pathogenic bacteria exploit host processes from the cell surface and have shed new light on how EPEC might cause diarrhoea.  相似文献   

11.
The prokaryotic tubulin homolog, FtsZ, forms a ring-like structure (FtsZ-ring) at midcell. The FtsZ-ring establishes the division plane and enables the assembly of the macromolecular division machinery (divisome). Although many molecular components of the divisome have been identified and their interactions extensively characterized, the spatial organization of these proteins within the divisome is unclear. Consequently, the physical mechanisms that drive divisome assembly, maintenance, and constriction remain elusive. Here we applied single-molecule based superresolution imaging, combined with genetic and biophysical investigations, to reveal the spatial organization of cellular structures formed by four important divisome proteins in E. coli: FtsZ, ZapA, ZapB and MatP. We show that these interacting proteins are arranged into a multi-layered protein network extending from the cell membrane to the chromosome, each with unique structural and dynamic properties. Further, we find that this protein network stabilizes the FtsZ-ring, and unexpectedly, slows down cell constriction, suggesting a new, unrecognized role for this network in bacterial cell division. Our results provide new insight into the structure and function of the divisome, and highlight the importance of coordinated cell constriction and chromosome segregation.  相似文献   

12.
Nasopharyngeal colonization provides bacteria with a place of residence, a platform for person-to-person transmission and for many opportunistic pathogens it is a prerequisite event towards the development of invasive disease. Therefore, how host factors within the nasopharynx contribute to, inhibit or otherwise shape biofilm formation, the primary mode of existence for colonizing bacteria, and how biofilm bacteria subvert the acute inflammatory response that facilitates clearance, are important topics for future microbiological research. This review proposes the examination of host components as bridging molecules for bacterial interactions during biofilm formation, altered virulence determinant production and cell wall modification as a mechanism for immunoquiescence, and the role of host factors as signals and co-opted mechanisms for bacterial dissemination, together providing an opportunity for disease.  相似文献   

13.
The molecular biology of plastid division in higher plants   总被引:11,自引:0,他引:11  
Plastids are essential plant organelles vital for life on earth, responsible not only for photosynthesis but for many fundamental intermediary metabolic reactions. Plastids are not formed de novo but arise by binary fission from pre-existing plastids, and plastid division therefore represents an important process for the maintenance of appropriate plastid populations in plant cells. Plastid division comprises an elaborate pathway of co-ordinated events which include division machinery assembly at the division site, the constriction of envelope membranes, membrane fusion and, ultimately, the separation of the two new organelles. Because of their prokaryotic origin bacterial cell division has been successfully used as a paradigm for plastid division. This has resulted in the identification of the key plastid division components FtsZ, MinD, and MinE, as well as novel proteins with similarities to prokaryotic cell division proteins. Through a combination of approaches involving molecular genetics, cell biology, and biochemistry, it is now becoming clear that these proteins act in concert during plastid division, exhibiting both similarities and differences compared with their bacterial counterparts. Recent efforts in the cloning of the disrupted loci in several of the accumulation and replication of chloroplasts mutants has further revealed that the division of plastids is controlled by a combination of prokaryote-derived and host eukaryote-derived proteins residing not only in the plastid stroma but also in the cytoplasm. Based on the available data to date, a working model is presented showing the protein components involved in plastid division, their subcellular localization, and their protein interaction properties.  相似文献   

14.
Bacterial cell growth is a complex process consisting of two distinct phases: cell elongation and septum formation prior to cell division. Although bacteria have evolved several different mechanisms for cell growth, it is clear that tight spatial and temporal regulation of peptidoglycan synthesis is a common theme. In this review, we discuss bacterial cell growth with a particular emphasis on bacteria that utilize tip extension as a mechanism for cell elongation. We describe polar growth among diverse bacteria and consider the advantages and consequences of this mode of cell elongation.  相似文献   

15.
Intracellular pathogens have evolved diverse strategies to invade and survive within host cells. Among the most studied facultative intracellular pathogens, Listeria monocytogenes is known to express two invasins-InlA and InlB-that induce bacterial internalization into nonphagocytic cells. The pore-forming toxin listeriolysin O (LLO) facilitates bacterial escape from the internalization vesicle into the cytoplasm, where bacteria divide and undergo cell-to-cell spreading via actin-based motility. In the present study we demonstrate that in addition to InlA and InlB, LLO is required for efficient internalization of L. monocytogenes into human hepatocytes (HepG2). Surprisingly, LLO is an invasion factor sufficient to induce the internalization of noninvasive Listeria innocua or polystyrene beads into host cells in a dose-dependent fashion and at the concentrations produced by L. monocytogenes. To elucidate the mechanisms underlying LLO-induced bacterial entry, we constructed novel LLO derivatives locked at different stages of the toxin assembly on host membranes. We found that LLO-induced bacterial or bead entry only occurs upon LLO pore formation. Scanning electron and fluorescence microscopy studies show that LLO-coated beads stimulate the formation of membrane extensions that ingest the beads into an early endosomal compartment. This LLO-induced internalization pathway is dynamin-and F-actin-dependent, and clathrin-independent. Interestingly, further linking pore formation to bacteria/bead uptake, LLO induces F-actin polymerization in a tyrosine kinase-and pore-dependent fashion. In conclusion, we demonstrate for the first time that a bacterial pathogen perforates the host cell plasma membrane as a strategy to activate the endocytic machinery and gain entry into the host cell.  相似文献   

16.
In this review we have tried to describe proteins and supermolecular structures which take part in the division of bacterial cell. The principal cell division protein of the most of prokaryotes is FtsZ, a homologue of eukaryotic tubulin. FtsZ just as tubulin is capable to bind and hydrolyze GTP. The division of bacterial cell begins with forming of so called divisome. The basis of such divisome is a contractile ring (Z ring); the ring encircles the cell about midcell. Z ring consists of a bundle of laterally bound protofilaments, which have been formed as a result of FtsZ polymerization. Z ring is rigidly bounded to cytozolic side of inner membrane with participation of FtsA, ZipA, FtsW and many other cell division proteins of divisome. The ring directs the process of cytokinesis transmitting power of constriction to membrane. Primary structures of members of the family of prokaryotic FtsZs differ from eukaryotic tubulines significantly except the region, where the site of GTP binding is placed. There is high degree of homology between structures of these proteins in the region. FtsZ is one of the most conservative proteins in prokaryotes, but ftsZ genes have not been found in completely sequenced genomes of several species of microorganisms. There are 2 species of mycoplasmas (Ureaplasma parvum and Mycoplasma mobile), Prostecobacter dejongeii, 10 species of chlamydia and 5 species of archaea among them. So these organisms divide without FtsZ. There are many open reading frames which encode proteins with unknown functions in genomes of U. parvum and M. mobile. The comparison of primary structures of these hypothetical proteins with structures of cell division proteins did not allow researchers to find similar proteins among them. We suppose that the process of cell division of these organisms should recruit proteins with function similar to FtsZ and having homologous with FtsZ or other cell division proteins spatial structures.  相似文献   

17.
Invasive bacterial pathogens often target cellular proteins involved in adhesion as a first event during infection. For example, Listeria monocytogenes uses the bacterial protein InlA to interact with E‐cadherin, hijack the host adherens junction (AJ) machinery and invade non‐phagocytic cells by a clathrin‐dependent mechanism. Here, we investigate a potential role for clathrin in cell–cell adhesion. We observed that the initial steps of AJ formation trigger the phosphorylation of clathrin, and its transient localization at forming cell–cell contacts. Furthermore, we show that clathrin serves as a hub for the recruitment of proteins that are necessary for the actin rearrangements that accompany the maturation of AJs. Using an InlA/E‐cadherin chimera, we show that adherent cells expressing the chimera form AJs with cells expressing E‐cadherin. We demonstrate that non‐adherent cells expressing the InlA chimera, as bacteria, can be internalized by E‐cadherin‐expressing adherent cells. Together these results reveal that a common clathrin‐mediated machinery may regulate internalization and cell adhesion and that the relative mobility of one of the interacting partners plays an important role in the commitment to either one of these processes.  相似文献   

18.
Proposed syntrophic interactions between the archaeal and bacterial cells mediating anaerobic oxidation of methane coupled with sulfate reduction include electron transfer through (1) the exchange of H2 or small organic molecules between methane-oxidizing archaea and sulfate-reducing bacteria, (2) the delivery of disulfide from methane-oxidizing archaea to bacteria for disproportionation and (3) direct interspecies electron transfer. Each of these mechanisms was implemented in a reactive transport model. The simulated activities across different arrangements of archaeal and bacterial cells and aggregate sizes were compared to empirical data for AOM rates and intra-aggregate spatial patterns of cell-specific anabolic activity determined by FISH-nanoSIMS. Simulation results showed that rates for chemical diffusion by mechanism (1) were limited by the build-up of metabolites, while mechanisms (2) and (3) yielded cell specific rates and archaeal activity distributions that were consistent with observations from single cell resolved FISH-nanoSIMS analyses. The novel integration of both intra-aggregate and environmental data provided powerful constraints on the model results, but the similarities in model outcomes for mechanisms (2) and (3) highlight the need for additional observational data (e.g. genomic or physiological) on electron transfer and metabolic functioning of these globally important methanotrophic consortia.  相似文献   

19.
The outer membrane of Gram‐negative bacteria is a crucial permeability barrier allowing the cells to survive a myriad of toxic compounds, including many antibiotics. This innate form of antibiotic resistance is compounded by the evolution of more active mechanisms of resistance such as efflux pumps, reducing the already limited number of clinically relevant treatments for Gram‐negative pathogens. During cell division Gram‐negative bacteria must coordinate constriction of the outer membrane in conjunction with other crucial layers of the cell envelope, the peptidoglycan cell wall and the inner membrane. Coordination is crucial in maintaining structural integrity of the envelope, and represents a highly vulnerable time for the cell as any failure can be fatal, if not least disadvantageous. However, the molecular mechanisms of cell division and how the biogenesis of the three layers is synchronised during constriction remain largely unknown. Perturbations of the outer membrane have been shown to increase the effectiveness of antibiotics in vitro, and so with improved understanding of this process we may be able to exploit this vulnerability and improve the effectiveness of antibiotic treatments. In this review the current knowledge of how Gram‐negative bacteria facilitate constriction of their outer membranes during cell division will be discussed.  相似文献   

20.
细胞外囊泡(Extracellular Vesicles,EVs)是从细胞膜上脱落或者分泌的双层膜结构的囊泡状小体.真核生物、细菌、古细菌和支原体等具有细胞结构的生物均能够释放EVs.细菌分泌的EVs含有DNA、RNA及蛋白质等多种成分,其在细菌毒力保持、免疫逃逸、细菌间物质运输、宿主细胞免疫调节、宿主转录基因调节、耐...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号