首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epidermal growth factor (EGF) and Ca2+ have been indicated to play a major role in skin development. We have used normal keratinocytes, SV40-transformed keratinocytes (SVK14) and various squamous carcinoma cell (SCC) lines as in vitro model system to study the effect of the extracellular Ca2+ concentration of EGF-receptor expression in relation to the capability of cells to differentiate. The cell lines used exhibit a decreasing capacity to differentiate in the order of keratinocytes approximately SVK14 greater than SCC-12F2 greater than SCC-15 greater than SCC-12B2 greater than SCC-4, as judged from Ca2+-ionophore-induced cornified envelope formation. Under normal Ca2+ conditions, all cell lines (except for SCC-15) exhibited two classes of EGF-binding sites. The number of low-affinity binding sites increased considerably as cells were less able to differentiate, while the apparent dissociation constant (kd) was similar in all cell lines. In contrast, the properties of high-affinity EGF binding varied in the various cell lines without a clear relationship to the degree of differentiation capacity. Lowering the extracellular Ca2+ concentration to 0.06 mM resulted in a decrease of Ca2+ ionophore-induced cornified envelope formation, demonstrating the decreased ability to differentiate under these conditions. The decreased ability to differentiate was accompanied by a marked increase in the number of EGF-binding sites, but without a change of the kd. Furthermore, no high-affinity EGF-binding sites were detectable under these conditions. Finally, addition of Ca2+ to low Ca2+-cultured cells caused a rapid decrease of EGF binding in all cell lines, most prominently in normal keratinocytes and SCC-12F2 cells. The data presented demonstrate: The combination of normal keratinocytes, SVK14 and the various SCC lines provides an attractive model system to study differentiation in vitro; EGF-receptor expression is related to the state of differentiation, both phenomena being sensitive to the external Ca2+ concentration; and EGF-receptor expression is related to the capability of cells to differentiate.  相似文献   

2.
Normal keratinocytes, SV40-transformed keratinocytes (SVK14), and various squamous carcinoma cell (SCC) lines have been used as an in vitro model system to study the properties of phorbol ester receptor and protein kinase C expression during keratinocyte differentiation. The cell lines used exhibit a decreasing capacity to differentiate in the order of keratinocytes approximately SVK14 greater than SCC-12F2 greater than SCC-15 greater than SCC-4; moreover, all cell lines respond to a low external Ca2+ concentration by a decreased capacity to differentiate. Normal keratinocytes exhibited the highest number of phorbol ester receptors as compared to the other cell lines, while each individual cell line exhibited a higher number of phorbol ester receptors during growth under normal Ca2+ conditions as compared to cells grown under low Ca2+ conditions. The apparent dissociation constant (Kd) demonstrated only small variations in the various cell lines. In contrast, the cytoplasmic protein kinase C activity, was found to be higher in cells grown under low Ca2+ conditions than in cells grown under normal Ca2+ conditions, indicating the absence of a causal relationship between cytoplasmic protein kinase C activity and phorbol ester receptor expression. Therefore the properties of protein kinase C have been determined in more detail in normal keratinocytes and SCC-15 cells. These studies revealed differences between protein kinase C properties from the two cell lines grown under normal and low Ca2+ conditions. The differences included the effect of phorbol 12-myristate 13-acetate (PMA) on the redistribution pattern of protein kinase C between the cytoplasmic and particulate fractions as well as the activating effect of diolein in vitro on protein kinase C activity, partly purified from particulate or cytoplasmic fractions. These observations demonstrate that the functional protein kinase C activity of keratinocytes is determined by various endogenous and exogenous activators and that these activators are modulated differently in various cell lines, under various growth conditions (low Ca2+ versus normal Ca2+).  相似文献   

3.
The possible relationship between cell surface receptor numbers, receptor gene expression for low density lipoprotein (LDL), insulin and epidermal growth factor (EGF), and differentiation capacity has been studied in normal and SV40 transformed (SVK14) keratinocytes, various squamous carcinoma cell (SCC) lines and A431 cells. Our recent studies demonstrated that an inverse relationship exists between LDL- and EGF-receptor binding and the ability to differentiate of both normal and transformed keratinocytes. In the present study cloned LDL- and EGF-receptor complementary DNAs were used as probes to identify both LDL and EGF receptor gene fragments on genomic DNA blots. The extent of hybridisation was found to be increased to the highest extent in A431 cells and decreased in other cells in the following order SCC-4 greater than SCC-15. In SCC-12F2, SVK14 and normal keratinocytes no increase has been observed. The increased hybridisation of LDL- and EGF-receptors in A431, SCC-4 and SCC-15 cells was found to be due to gene amplification and not to aneuploidy. In contrast to the LDL- and EGF-receptor binding, no correlation has been found between insulin receptor binding and ability of cells to differentiate. Furthermore, no amplification of insulin receptor gene has been observed in any of the cells under study.  相似文献   

4.
We have studied the relationship between differentiation capacity, plasma membrane composition, and epidermal growth factor (EGF) receptor expression of normal keratinocytes in vitro. The plasma membrane composition of the cells was modulated experimentally by cholesterol depletion, using specific inhibitors of cholesterol synthesis, such as 25-hydroxycholesterol and mevinolin. Exposure of the cells towards these inhibitors resulted in a drastic decrease of cholesterol biosynthesis, as determined from 14C-acetate incorporation into the various lipid fractions. This effect on cholesterol biosynthesis was reflected by changes in plasma membrane composition, as determined by lipid analysis of isolated plasma membrane fractions, these resulting in a decreased cholesterol-phospholipid ratio. The experimental modulation of plasma membrane composition by 25-hydroxycholesterol or mevinolin were accompanied by a decreased cornified envelope formation and by high expression of EGF binding sites. These phenomena were more pronounced in cells induced to differentiate by exposure of cells grown under low Ca2+ to normal Ca2+ concentrations, as compared to cells grown persistently under low Ca2+ concentrations. These results suggest a close correlation between plasma membrane composition, differentiation capacity, and EGF receptor expression.  相似文献   

5.
Summary Differentiation in keratinocytes can be experimentally modulated by changing the culture conditions. When cultured under conventional, submerged conditions, the extent of cellular differentiation is reduced in the presence of low calcium medium and is enhanced in medium containing physiologic calcium concentrations. Moreover cultures grown at the air-medium interface or on a dermal substrate, or both, differentiate even further. Herein we report the effect of culture conditions on lipid composition in normal human keratinocytes and three squamous carcinoma cell (SCC) lines that vary in their capacity to differentiate as assessed by cornified envelope formation. Under submerged conditions, the total phospholipid content was lower, triglyceride content higher, and phospholipid: neutral lipid ratio lower in direct correlation to the degree of differentiation in these cultures. When grown at the air-medium interface on the-epidermized dermis, evidence of further morphologic differentiation was found only for well-differentiated SCC cells and normal keratinocytes. Similarly, the phospholipid content remained high in poorly differentiated SCC cells and it, decreased modestly in well-differentiated SCC cells and markedly in normal keratinocytes. In all cell lines the triglyceride content was increased and cholesterol content decreased when compared to parallel submerged cultures, but these differences were most pronounced in well-differentiated cell lines. Acylceramides and acylglucosylceramides were found only in normal keratinocytes and only under the most differentiation-enhancing conditions. These studies demonstrate differentiation-related changes in the lipid content of both normal and neoplastic keratinocytes. This work was supported in part by NATO Scientific Award (RG 8510056).  相似文献   

6.
In a previously published report (Exp. Cell. Res. 161:421 (1985] we have demonstrated that cultured normal and transformed keratinocytes exhibit two classes of EGF binding sites after growth under normal Ca2+ conditions but only low-affinity binding sites after growth under low Ca2+ conditions. Here we demonstrate the presence of high-affinity binding sites in transformed keratinocytes grown under low Ca2+ conditions, using a specific monoclonal anti EGF-receptor antibody.  相似文献   

7.
Calcium plays an important role in the regulation of different functions of keratinocytes. In the present work we studied the effect of different extracellular calcium concentrations (0.01 mM-2.0 mM) on the proliferation and differentiation of human keratinocytes in normal human and non-lesional psoriatic skin. Using explant culture model, the proliferative and differentiated subsets of keratinocytes were detected by specific antibodies related to cell proliferation [beta-1 integrin (CD29), proliferating cell antigen (Ki67), proliferating cell nuclear antigen (PCNA)] and differentiation [differentiated cell cytokeratins (K1/K10) and differentiating cell antigen (lectin Ulex europaius agglutinin, UEA-1)]. After 4 days of culturing at high Ca2+ (2.0 mM) we observed marked hyperproliferation among the normally quiescent keratinocytes of non-lesional psoriatic skin. In normal uncultured and cultured skin and in uncultured and two-day-cultured non-lesional psoriatic skin both at normal (1.2 mM) and at high (2.0 mM) Ca2+ concentration only one layer of basal CD29+/Ki67+/K1/K10-/UEA-1- cell was observed. In sections from non-lesional psoriatic skin cultured for 4 days in the presence of high Ca2+ (2.0 mM) this cell population has expanded from at least three layers above the basement membrane. This expanded cell population of the 4-day high Ca2+ cultured non-lesional skin showed clear PCNA positive staining on frozen sections with the strongest positivity among the most basal localized cells. These data suggest that (i) extracellular Ca2+ concentration can influence the proliferation of basal ("stem") keratinocytes, (ii) the proliferative response to high Ca2+ concentration of psoriatic non-lesional basal keratinocytes differs from that of normal basal keratinocytes, (iv) changes in the extracellular Ca2+ milieu might play a role in the induction of the hyperproliferative psoriatic lesion.  相似文献   

8.
Involucrin is a precursor protein of detergent-insoluble cornified envelope and a marker of terminal differentiation of epidermal keratinocytes. To quantify differentiation of cultured human keratinocytes, the population of involucrin-positive cells was estimated by immunofluorescent staining using anti-involucrin antibody and flow cytometry. Normal human keratinocytes were cultured under three conditions for induction of differentiation: low Ca2+ concentration (0.1 mM Ca2+), high Ca2+ concentration (1.8 mM Ca2+), and high Ca2+ concentration with 10% fetal bovine serum (FBS). The relationship between fluorescence intensity and involucrin synthesis was confirmed by visual examination of sorted cells. The population of involucrin-positive cells increased from 7.2 to 18.1% by elevating Ca2+ concentration and to 37.0% by adding FBS. The extent of cornified envelope formation under the same culture conditions was consistent with the estimation of involucrin-positive cells. The cytofluorographic analysis of involucrin synthesis made it possible to determine the number of differentiated cells in a large number of samples precisely and reliably. Thus, it is a useful method for quantifying keratinocyte differentiation.  相似文献   

9.
Electrophysiologic properties of cultured human keratinocytes were studied using the patch voltage-clamp technique. Undifferentiated, proliferative keratinocytes grown in low Ca2+ medium had an average resting membrane potential of -24 mV. Voltage-clamp experiments showed that these cells had two membrane ionic currents: a large voltage-independent leak conductance, and a smaller voltage-dependent Cl- current that activated with depolarization. Increasing the extracellular Ca2+ concentration from 0.15 to 2 mM resulted in a doubling of the magnitude of the voltage-gated current and a shift in current activation to more negative potentials. Since levels of extracellular Ca2+ can alter the morphology and differentiation state of keratinocytes, the finding of a Ca2(+)-activated Cl- current in these cells suggests a role for this conductance in the initiation of differentiation.  相似文献   

10.
Unlike cells cultured under physiological Ca2+ concentrations (1-2 mM), keratinocytes cultured in media containing Ca2+ in low concentrations (less than 0.1 mM) do not stratify. The latter cells also differ with respect to several features of the regulation of cholesterol synthesis. In keratinocytes cultured in medium containing high Ca2+ concentrations (1.6 mM) and fetal calf serum, the rate of cholesterol synthesis was 20-30 times higher than in keratinocytes exposed to a low Ca2+ concentration. The rate of cholesterol synthesis did not change when high-calcium cells were deprived of extracellular sources of cholesterol but increased (8-10 fold) in deprived low-calcium cells. Furthermore, the addition of low density lipoprotein (LDL) reduced cholesterol synthesis markedly in low-calcium cells but had no effect on high-calcium cells. Finally, in keratinocytes cultured at low calcium concentrations the association and degradation of 125I-LDL was 20-30 times higher than in keratinocytes cultured under high-calcium conditions. Switching of the cells from the low-calcium to the high-calcium medium resulted in the induction of terminal differentiation within 15 hours and was accompanied by increased cholesterol and protein synthesis, increased competence of cells to form cornified envelopes, and reduced association of 125I-LDL. A gradual increase of the extracellular Ca2+ concentration was accompanied by a corresponding increase of cholesterol and protein synthesis and a decrease of the response of intracellular cholesterol synthesis to changes in the extracellular concentrations of lipoprotein. Various morphological techniques showed virtually no binding and internalization of LDL by keratinocytes cultured at the high-calcium level, whereas both were observed at the low-calcium level. Once internalized, the LDL was delivered to dense bodies representing lysosomes. It is concluded that in human epidermal keratinocytes, the expression of the LDL receptor and the endogenous synthesis of cholesterol are regulated by the conditions determined by the differentiation stage of the cells.  相似文献   

11.
The effect of transforming growth factor-type beta 1(TGF-beta) on the growth and differentiation of normal human skin keratinocytes cultured in serum-free medium was investigated. TGF-beta markedly inhibited the growth of keratinocytes at the concentrations greater than 2 ng/ml under low Ca2+ conditions (0.1 mM). Growth inhibition was accompanied by changes in cell functions related to proliferation. Remarkable inhibition of DNA synthesis was demonstrated by the decrease of [3H]thymidine incorporation. The decrease of [3H]thymidine incorporation was observed as early as 3 hr after addition of TGF-beta. TGF-beta also decreased c-myc messenger RNA (mRNA) expression 30 min after addition of TGF-beta. This rapid reduction of c-myc mRNA expression by TGF-beta treatment is possibly one of the main factors in the process of TGF-beta-induced growth inhibition of human keratinocytes. Since growth inhibition and induction of differentiation are closely related in human keratinocytes, the growth-inhibitory effect of TGF-beta under high Ca2+ conditions (1.8 mM Ca2+, differentiation-promoting culture environment) was examined. TGF-beta inhibited the growth of keratinocytes under high Ca2+ conditions in the same manner as under low Ca2+ conditions, suggesting that it is a strong growth inhibitor in both low and high Ca2+ environments. The induction of keratinocyte differentiation was evaluated by measuring involucrin expression and cornified envelope formation: TGF-beta at 20 ng/ml increased involucrin expression from 9.3% to 18.8% under high Ca2+ conditions, while it decreased involucrin expression from 7.0% to 3.3% under low Ca2+ conditions. Cornified envelope formation was modulated in a similar way by addition of TGF-beta: TGF-beta at 20 ng/ml decreased cornified envelope formation by 53% under low Ca2+ conditions, while it enhanced cornified envelope formation by 30.7% under high Ca2+ conditions. Thus, the effect of TGF-beta on keratinocyte differentiation is Ca2+ dependent. It enhances differentiation of human keratinocytes under high Ca2+ conditions, but inhibits differentiation under low Ca2+ conditions. Taken together, there is a clear discrepancy between TGF-beta effects on growth inhibition and induction of differentiation in human keratinocytes. These data indicate that growth inhibition of human keratinocytes by TGF-beta is direct and not induced by differentiation.  相似文献   

12.
We used specific monoclonal antibodies (MAb) to human cytochrome P450 isoenzymes to determine the presence of these proteins in human epidermal cells. Two MAb (P450-5 and P450-8) recognize major forms of hepatic cytochrome P450 involved in biotransformation of xenobiotics. A third MAb, to cytochrome P450-9, is not fully characterized. The proteins were determined by the indirect immunoperoxidase technique after fixation with methanol and acetone. Biopsy materials for cultured keratinocytes, i.e., foreskin and hair follicles, contained the two major forms of cytochrome P450. In cultured keratinocytes derived from hair follicles the proteins were undetectable, whereas the keratinocytes derived from foreskin continued to express the two major forms of hepatic cytochrome P450. Cultured human fibroblasts and a human keratinocyte cell line (SVK14) showed staining similar to that of the foreskin keratinocytes. Cytochrome P450-9 was detectable only in human hepatocytes. The results indicate that, under the culture conditions applied, cultured human foreskin cells and the cell line SVK14 continue to express specific cytochrome P450 isoenzymes in culture, in contrast to hair follicle keratinocytes.  相似文献   

13.
IGF I induces differentiation in a transformed human keratinocyte line   总被引:1,自引:0,他引:1  
A comparison of normal epithelial cells with their transformed counterparts could lead to the definition of parameters related to growth and differentiation which are altered by viral transformation and which may be relevant to malignant changes in vivo. Using the SV40-transformed human keratinocyte line, SVK14, which exhibits characteristics of simple, nonkeratinizing epithelia, we have shown that IGF I stimulation of these cells results in extensive multilayering, increased cell size, accumulation of involucrin, modulation of keratin 18 and expression of keratins 14 and 10, whilst T-antigen expression is maintained in the multilayered cells. Since T-antigen expression is correlated directly with impairment of stratification and differentiation, it is interesting that treatment of SVK14 with a single growth factor. IGF I, results in molecular events characteristic of differentiating normal keratinocytes.  相似文献   

14.
Effect of hepatocyte growth factor (HGF) on normal human epidermal keratinocytes cultured under conditions of low Ca2+ (0.1 mM, growth-promoting condition) and physiological Ca2+ (1.8 mM, differentiation-promoting condition) was investigated. In low Ca2+, HGF markedly enhanced the migration of keratinocytes while it suppressed cell growth and DNA synthesis in a dose-dependent manner. In contrast, HGF enhanced the migration, cell growth, and DNA synthesis of keratinocytes cultured under conditions of physiological Ca2+. The maximal stimulation of DNA synthesis (2.4-fold stimulation) in physiological Ca2+ was seen at 2.5-5 ng/ml HGF and the stimulatory effect of HGF was suppressed by transforming growth factor-beta 1. Analysis of the HGF receptor using 125I-HGF as a ligand showed that human keratinocytes expressed a single class of specific, saturable receptor for HGF in both low and physiological Ca2+ conditions, exhibiting a Kd = 17.3 pM and approximately 690 binding sites/cell under physiological Ca2+. Thus, HGF is a potent factor which enhances growth and migration of normal human keratinocytes under conditions of physiological Ca2+. HGF may play an important role in epidermal tissue repair as it enhances both the migration and growth of keratinocytes.  相似文献   

15.
The expression of differentiation stages in a murine epidermal cell transformation model has been investigated as a basis for studies of chemically-induced differentiation. Antibodies in sera of patients with the autoimmune diseases bullous pemphigoid and pemphigus vulgaris exhibit specific reactivity to antigenic determinants of basal and spinous cells, respectively, in sections of mouse and human epidermis. In addition, spinous cells in epidermis are reactive with a mouse monoclonal antibody to desmoplakin, a desmosomal component immunologically distinct from pemphigus. These antibodies were used to identify and attempt to quantify keratinocyte subpopulations in culture based on differentiation stage. Epidermal cell lines were cultured under conditions which favour proliferation (0.02 to 0.04 mM extracellular Ca2+, i.e. low Ca2+ conditions) or differentiation (0.1 mM to 1.4 mM Ca2+), as previously shown using primary cultures of mouse keratinocytes. Two independently-derived normal keratinocyte lines demonstrated Ca2(+)-dependent reactivity with pemphigoid and pemphigus antiserum, like that which has been observed in primary cultures. Furthermore, a Ca2+ and time-dependent reactivity with the three antisera was also observed in a papilloma cell line (derived from one of the normal cell lines after treatment in vitro with 7,12-dimethylbenz[alpha]anthracene). Papilloma cells cultured under conditions of low extracellular Ca2+ were comprised of three subpopulations: cells reactive only with pemphigoid anti-serum, cells reactive only with desmoplakin antibody. However, like the normal cell lines, papilloma cells underwent a transition to predominantly a spinous cell population (i.e. reactive with pemphigus and desmoplakin antibody) in response to extracellular Ca2+. A slower loss of pemphigoid antibody reactivity was noted in papilloma cells, consistent with an abnormal regulation of differentiation. The attempt to characterize these dynamic transitions from basal to spinous cell subpopulations in culture was considered to be prerequisite for the use of the model to investigate differentiation-inducing agents in carcinoma therapy.  相似文献   

16.
Ca(2+) is an essential factor inducing keratinocyte differentiation due to the natural Ca(2+) gradient in the skin. However, the membrane mechanisms that mediate calcium entry and trigger keratinocyte differentiation had not previously been elucidated. In this study we demonstrate that Ca(2+)-induced differentiation up-regulates both mRNA and protein expression of a transient receptor potential highly Ca(2+)-selective channel, TRPV6. The latter mediates Ca(2+) uptake and accounts for the basal [Ca(2+)](i) in human keratinocytes. Our results show that TRPV6 is a prerequisite for keratinocyte entry into differentiation, because the silencing of TRPV6 in human primary keratinocytes led to the development of impaired differentiated phenotype triggered by Ca(2+). The expression of such differentiation markers as involucrin, transglutaminase-1, and cytokeratin-10 was significantly inhibited by small interfering RNA-TRPV6 as compared with differentiated control cells. TRPV6 silencing affected cell morphology and the development of intercellular contacts, as well as the ability of cells to stratify. 1,25-Dihydroxyvitamin D3, a cofactor of differentiation, dose-dependently increased TRPV6 mRNA and protein expression in human keratinocytes. This TRPV6 up-regulation led to a significant increase in Ca(2+) uptake in both undifferentiated and differentiated keratinocytes. We conclude that TRPV6 mediates, at least in part, the pro-differentiating effects of 1,25-dihydroxyvitamin D3 by increasing Ca(2+) entry, thereby promoting differentiation. Taken together, these data suggest that the TRPV6 channel is a key element in Ca(2+)/1,25-dihydroxyvitamin D3-induced differentiation of human keratinocytes.  相似文献   

17.
Indirect immunofluorescence microscopy has been used to investigate the ultraviolet (UV) radiation induced disruption of the organization of microfilaments, keratin intermediate filaments, and microtubules in cultured human epidermal keratinocytes. Following irradiation, concurrent changes in the organization of the three major cytoskeletal components were observed in cells incubated under low Ca2+ (0.15 mM) conditions. UV irradiation induced a dose-dependent condensation of keratin filaments into the perinuclear region. This collapse of the keratin network was accompanied by the reorganization of microfilaments into rings and a restricted distribution of microtubules, responses normally elicited by exposure to high Ca2+ (1.05 mM) medium. The UV induced alteration of the keratin network appears to disrupt the interactions between keratin and actin, permitting the reorganization of actin filaments in the absence of Ca2+ stimulation. In addition to the perinuclear condensation of keratin filaments, UV irradiation inhibits the Ca2+ induced formation of keratin alignments at the membrane of apposed cells if UV treatment precedes exposure to high Ca2+ medium. Incubation of keratinocytes in high Ca2+ medium for 24 hours prior to irradiation results in the stabilization of membrane associated keratin alignments and a reduced susceptibility of cytoplasmic keratin filaments to UV induced disruption. Unlike results from investigations with isogenic skin fibroblasts, no UV induced disassembly of microtubules was discernible in irradiated human keratinocytes.  相似文献   

18.
Interferon (IFN)-gamma has been shown to modulate cell differentiation and the expression of cell surface molecules of cultured human keratinocytes; it also induces cell shedding. We have previously described the properties of desquamin, a cell surface adhesion molecule from the stratum corneum. We report here on the impact of IFN-gamma on the expression of desquamin. We document the related morphological changes in terminal differentiation. We cultured human keratinocytes in three different culture systems: in serum-free medium at low Ca2+ (0.1 mM), at high Ca2+ (1.5 mM), and at high Ca2+ with 10% serum. IFN-gamma (100 U/ml) was added to each culture system after overnight incubation. In all cases, IFN-gamma induced an altered phenotype, as shown by phase contrast and electron microscopy. We exposed cultured cells to antibodies to the desquamins (glycoproteins from the stratum corneum). Immunoflurescent localization and Western blotting showed that the desquamins were expressed only under culture conditions where both serum and IFN-gamma were present. The induction of desquamin expression by IFN-gamma coupled with an increase in cell shedding, suggests that we have developed a suitable culture system for the study of desquamation in vitro.  相似文献   

19.
The skin is the major source of Vitamin D(3) (cholecalciferol), and ultraviolet light (UV) is critical for its formation. Keratinocytes, the major cell in the epidermis, can further convert Vitamin D(3) to its hormonal form, 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] (calcitriol). 1,25(OH)(2)D(3) in turn stimulates the differentiation of keratinocytes, raising the hope that 1,25(OH)(2)D(3) may prevent the development of malignancies in these cells. Skin cancers (squamous cell carcinoma (SCC), basal cell carcinoma (BCC), and melanomas) are the most common cancers afflicting humans. UV exposure is linked to the incidence of these cancers-UV is thus good and bad for epidermal health. Our focus is on the mechanisms by which 1,25(OH)(2)D(3) regulates the differentiation of keratinocytes, and how this regulation breaks down in transformed cells. Skin cancers produce 1,25(OH)(2)D(3), contain ample amounts of the Vitamin D receptor (VDR), and respond to 1,25(OH)(2)D(3) with respect to induction of the 24-hydroxylase, but fail to differentiate in response to 1,25(OH)(2)D(3). Why not? The explanation may lie in the overexpression of the DRIP complex, which by interfering with the normal transition from DRIP to SRC as coactivators of the VDR during differentiation, block the induction of genes required for 1,25(OH)(2)D(3)-induced differentiation.  相似文献   

20.
We have studied the effect of maturation to small intestinal-like epithelial cells of the human colonic carcinoma cell line HT29 on the lateral mobility of different representative membrane components (lipid, proteins), as assessed with fluorescence recovery after photobleaching (FRAP). Maturation was induced in vitro in the HT29 cells by replacing glucose (Glu) with galactose (Gal) in the growth medium (DMEM) during a 21-day period. Scanning electron microscopy revealed an increased number of microvilli in the apical cell membrane, and enzyme analyses (alkaline phosphatase, aminopeptidase) in combination with aqueous countercurrent distribution, indicated that maturation was induced with DMEM-Gal. In comparison to control cells grown in DMEM-Glu medium, the more small intestinal-like cells grown in DMEM-Gal displayed no alteration of the lateral mobility of either cholera toxin (B subunit)-labelled ganglioside GM1 (diffusion coefficient, D [x 10(8)] = 0.8-0.9 cm2s-1; mobile fraction, R = 50-60%) or antibody-stained Class 2 histocompatibility (HLA-DR) antigen (D [x 10(9)] = 2 cm2s-1; R = 60-70%). However, antibody-labelled beta 2-microglobulin of HLA Class 1 antigen displayed increased mobility in HT29-Gal cells; D was x 1.4 and R x 1.8 larger in the HT29-Gal cells. By contrast, the mobility of a neoplastic antigen was reduced; D and R were x0.60 and x0.69 of the values seen in HT29-Glu cells. It is thus concluded that DMEM-Gal-induced differentiation in confluent HT29 cells is accompanied by specific rather than general effects on the lateral mobility of different membrane components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号