首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sagar M  Wu X  Lee S  Overbaugh J 《Journal of virology》2006,80(19):9586-9598
Over the course of infection, human immunodeficiency virus type 1 (HIV-1) continuously adapts to evade the evolving host neutralizing antibody responses. Changes in the envelope variable loop sequences, particularly the extent of glycosylation, have been implicated in antibody escape. To document modifications that potentially influence antibody susceptibility, we compared envelope variable loops 1 and 2 (V1-V2) from multiple sequences isolated at the primary phase of infection to those isolated around 2 to 3 years into the chronic phase of infection in nine women with HIV-1 subtype A. HIV-1 sequences isolated during chronic infection had significantly longer V1-V2 loops, with a significantly higher number of potential N-linked glycosylation sites, than the sequences isolated early in infection. To assess the effects of these V1-V2 changes on antibody neutralization and infectivity, we created chimeric envelope sequences, which incorporated a subject's V1-V2 sequences into a common subtype A envelope backbone and then used them to generate pseudotyped viruses. Compared to the parent virus, the introduction of a subject's early-infection V1-V2 envelope variable loops rendered the chimeric envelope more sensitive to that subject's plasma samples but only to plasma samples collected >6 months after the sequences were isolated. Neutralization was not detected with the same plasma when the early-infection V1-V2 sequences were replaced with chronic-infection V1-V2 sequences, suggesting that changes in V1-V2 contribute to antibody escape. Pseudotyped viruses with V1-V2 segments from different times in infection, however, showed no significant difference in neutralization sensitivity to heterologous pooled plasma, suggesting that viruses with V1-V2 loops from early in infection were not inherently more neutralization sensitive. Pseudotyped viruses bearing chimeric envelopes with early-infection V1-V2 sequences showed a trend in infecting cells with low CD4 concentrations more efficiently, while engineered viruses with V1-V2 sequences isolated during chronic infection were moderately better at infecting cells with low CCR5 concentrations. These studies suggest that changes within the V1-V2 envelope domains over the course of an infection influence sensitivity to autologous neutralizing antibodies and may also impact host receptor/coreceptor interactions.  相似文献   

2.
The study of the evolution and specificities of neutralizing antibodies during the course of human immunodeficiency virus type 1 (HIV-1) infection may be important in the discovery of possible targets for vaccine design. In this study, we assessed the autologous and heterologous neutralization responses of 14 HIV-1 subtype C-infected individuals, using envelope clones obtained within the first 2 months postinfection. Our data show that potent but relatively strain-specific neutralizing antibodies develop within 3 to 12 months of HIV-1 infection. The magnitude of this response was associated with shorter V1-to-V5 envelope lengths and fewer glycosylation sites, particularly in the V1-V2 region. Anti-MPER antibodies were detected in 4 of 14 individuals within a year of infection, while antibodies to CD4-induced (CD4i) epitopes developed to high titers in 12 participants, in most cases before the development of autologous neutralizing antibodies. However, neither anti-MPER nor anti-CD4i antibody specificity conferred neutralization breadth. These data provide insights into the kinetics, potency, breadth, and epitope specificity of neutralizing antibody responses in acute HIV-1 subtype C infection.  相似文献   

3.
Antibody-dependent cell-mediated viral inhibition (ADCVI) is an attractive target for vaccination because it takes advantage of both the anamnestic properties of an adaptive immune response and the rapid early response characteristics of an innate immune response. Effective utilization of ADCVI in vaccine strategies will depend on an understanding of the natural history of ADCVI during acute and chronic human immunodeficiency virus type 1 (HIV-1) infection. We used the simian immunodeficiency virus (SIV)-infected rhesus monkey as a model to study the kinetics of ADCVI in early infection, the durability of ADCVI through the course of infection, and the effectiveness of ADCVI against viruses with envelope mutations that are known to confer escape from antibody neutralization. We demonstrate the development of ADCVI, capable of inhibiting viral replication 100-fold, within 3 weeks of infection, preceding the development of a comparable-titer neutralizing antibody response by weeks to months. The emergence of ADCVI was temporally associated with the emergence of gp140-binding antibodies, and in most animals, ADCVI persisted through the course of infection. Highly evolved viral envelopes from viruses isolated at late time points following infection that were resistant to plasma neutralization remained susceptible to ADCVI, suggesting that the epitope determinants of neutralization escape are not shared by antibodies that mediate ADCVI. These findings suggest that despite the ability of SIV to mutate and adapt to multiple immunologic pressures during the course of infection, SIV envelope may not escape the binding of autologous antibodies that mediate ADCVI.  相似文献   

4.
Elucidation of the kinetics of exposure of neutralizing epitopes on the envelope of human immunodeficiency virus type 1 (HIV-1) during the course of infection may provide key information about how HIV escapes the immune system or why its envelope is such a poor immunogen to induce broadly efficient neutralizing antibodies. We analyzed the kinetics of exposure of the epitopes corresponding to the broadly neutralizing human monoclonal antibodies immunoglobulin G1b12 (IgG1b12), 2G12, and 2F5 at the quasispecies level during infection. We studied the antigenicity and sequences of 94 full-length envelope clones present during primary infection and at least 4 years later in four HIV-1 clade B-infected patients. No or only minor exposure differences were observed for the 2F5 and IgG1b12 epitopes between the early and late clones. Conversely, the envelope glycoproteins of the HIV-1 quasispecies present during primary infection did not expose the 2G12 neutralizing epitope, unlike those present after several years in three of the four patients. Sequence analysis revealed major differences at potential N-linked glycosylation sites between early and late clones, particularly at positions known to be important for 2G12 binding. Our study, in natural mutants, confirms that the glycosylation sites N295, N332, and N392 are essential for 2G12 binding. This study demonstrates the relationship between the evolving "glycan shield " of HIV and the kinetics of exposure of the 2G12 epitope during the course of natural infection.  相似文献   

5.
A standard panel of subtype C human immunodeficiency virus type 1 (HIV-1) Env-pseudotyped viruses was created by cloning, sequencing, and characterizing functional gp160 genes from 18 acute and early heterosexually acquired infections in South Africa and Zambia. In general, the gp120 region of these clones was shorter (most evident in V1 and V4) and less glycosylated compared to newly transmitted subtype B viruses, and it was underglycosylated but no different in length compared to chronic subtype C viruses. The gp120s also exhibited low amino acid sequence variability (12%) in V3 and high variability (39%) immediately downstream of V3, a feature shared with newly transmitted subtype B viruses and chronic viruses of both subtypes. When tested as Env-pseudotyped viruses in a luciferase reporter gene assay, all clones possessed an R5 phenotype and resembled primary isolates in their sensitivity to neutralization by HIV-1-positive plasmas. Results obtained with a multisubtype plasma panel suggested partial subtype preference in the neutralizing antibody response to infection. The clones were typical of subtype C in that all were resistant to 2G12 (associated with loss of N-glycosylation at position 295) and most were resistant to 2F5, but all were sensitive to 4E10 and many were sensitive to immunoglobulin G1b12. Finally, conserved neutralization epitopes in the CD4-induced coreceptor binding domain of gp120 were poorly accessible and were difficult to induce and stabilize with soluble CD4 on Env-pseudotyped viruses. These results illustrate key genetic and antigenic properties of subtype C HIV-1 that might impact the design and testing of candidate vaccines. A subset of these gp160 clones are suitable for use as reference reagents to facilitate standardized assessments of vaccine-elicited neutralizing antibody responses.  相似文献   

6.
N Sullivan  Y Sun  J Li  W Hofmann    J Sodroski 《Journal of virology》1995,69(7):4413-4422
The structure, replicative properties, and sensitivity to neutralization by soluble CD4 and monoclonal antibodies were examined for molecularly cloned envelope glycoproteins derived from human immunodeficiency virus type 1 (HIV-1) viruses either isolated directly from patients or passaged in T-cell lines. Complementation of virus entry into peripheral blood mononuclear cell targets by primary patient envelope glycoproteins exhibited efficiencies ranging from that observed for the HXBc2 envelope glycoproteins, which are derived from a T-cell line-passaged virus, to approximately fivefold-lower values. The ability of the envelope glycoproteins to complement virus entry roughly correlated with sensitivity to neutralization by soluble CD4. Laboratory-adapted viruses were sensitive to neutralization by monoclonal antibodies directed against the CD4-binding site and the third variable (V3) loop of the gp120 glycoprotein. By comparison, viruses with envelope glycoproteins from primary patient isolates exhibited decreased sensitivity to neutralization by these monoclonal antibodies; for these viruses, neutralization sensitivity correlated with replicative ability. Subinhibitory concentrations of soluble CD4 and a CD4-binding site-directed antibody significantly enhanced the entry of viruses containing envelope glycoproteins from some primary patient isolates. The sensitivity of viruses containing the different envelope glycoproteins to neutralization by soluble CD4 or monoclonal antibodies could be predicted by assays dependent on the binding of the inhibitory molecule to the oligomeric envelope glycoprotein complex but less well by assays measuring binding to the monomeric gp120 glycoprotein. These results indicate that the intrinsic structure of the oligomeric envelope glycoprotein complex of primary HIV-1 isolates, while often less than optimal with respect to the mediation of early events in virus replication, allows a relative degree of resistance to neutralizing antibodies. The interplay of selective forces for higher virus replication efficiency and resistance to neutralizing antibodies could explain the temporal course described for the in vivo emergence of HIV-1 isolates with differing phenotypes.  相似文献   

7.
We previously showed that HIV-1 subtype C viruses elicit potent but highly type-specific neutralizing antibodies (nAb) within the first year of infection. In order to determine the specificity and evolution of these autologous nAbs, we examined neutralization escape in four individuals whose responses against the earliest envelope differed in magnitude and potency. Neutralization escape occurred in all participants, with later viruses showing decreased sensitivity to contemporaneous sera, although they retained sensitivity to new nAb responses. Early nAb responses were very restricted, occurring sequentially and targeting only two regions of the envelope. In V1V2, limited amino acid changes often involving indels or glycans, mediated partial or complete escape, with nAbs targeting the V1V2 region directly in 2 cases. The alpha-2 helix of C3 was also a nAb target, with neutralization escape associated with changes to positively charged residues. In one individual, relatively high titers of anti-C3 nAbs were required to drive genetic escape, taking up to 7 weeks for the resistant variant to predominate. Thereafter titers waned but were still measurable. Development of this single anti-C3 nAb specificity was associated with a 7-fold drop in HIV-1 viral load and a 4-fold rebound as the escape mutation emerged. Overall, our data suggest the development of a very limited number of neutralizing antibody specificities during the early stages of HIV-1 subtype C infection, with temporal fluctuations in specificities as escape occurs. While the mechanism of neutralization escape appears to vary between individuals, the involvement of limited regions suggests there might be common vulnerabilities in the HIV-1 subtype C transmitted envelope.  相似文献   

8.
Characterization of the neutralizing interaction between antibody and virus is hindered by the nonsynchronized progression of infection in cell cultures. Discrete steps of the viral entry sequence cannot be discerned, and thus, the mode of antibody-mediated interference with virus infectivity remains undefined. Here, we magnetically synchronize the motion and cell attachment of human immunodeficiency virus type 1 (HIV-1) to monitor the progression of neutralization, both in solution and following virus attachment to the cell. By simultaneous transfer of all viral particles from reaction solution with antibody to the cell-bound state, the precise rate of neutralization of cell-free virus could be determined for each antibody. HIV-1 neutralization by both monoclonal and polyclonal antibody preparations followed distinct pseudo-first-order kinetics. For all antibodies, cell types, and HIV-1 strains examined, postattachment interference served a major role in the neutralizing effect. To monitor the progression of postattachment interference, we synchronized the entry process at initiation and measured the escape of cell-bound virus from antibody. We found that different antibodies neutralized the virus over different time frames during the entry phase. Virus was observed to progress through a sequence of shifting sensitivities to different antibodies during entry, suggested here to correlate with the exposure time of the target epitope on receptor-activated viral envelope proteins. Thus, by monitoring the progression of HIV-1 entry under synchronized conditions, we identify a new and significant determinant of antibody neutralization capacity, namely, the time frames for neutralization during the course of the viral entry phase.  相似文献   

9.
Individuals infected with human immunodeficiency virus type 1 (HIV-1) harbor a mixture of viral variants with different sequences and in some instances with different phenotypic properties. Major and rapid fluctuations in the proportion of viral variants coexisting in an infected individual can be observed under strong pharmacological and immune selective pressure. Because of the short half-life of HIV-infected cells and of HIV virions in the blood, plasma virus populations are highly relevant to HIV evolution in the face of these selective pressures. Here we analyzed the sensitivity to antibody-mediated neutralization of viral variants coexisting in the plasma virus populations of two infected patients. For each patient, several replication-competent viral clones were constructed that carry primary envelope gene sequences obtained from a single plasma sample. Viral clones differed in their tropism and replicative capacity and in the number and positions of glycosylation sites in the envelope glycoproteins. Viruses were tested against heterologous and autologous sera obtained at different time points. Interestingly, we found that viral variants coexisting in each plasma sample were highly heterogeneous in terms of sensitivity to neutralization. The order of sensitivity depended on the serum used and was not associated with virus tropism. The neutralization potency of sera increased with the duration of the infection for both autologous and heterologous neutralization.  相似文献   

10.
CXCR4-using (X4) human immunodeficiency virus type 1 (HIV-1) variants evolve from CCR5-using (R5) variants relatively late in the natural course of infection in 50% of HIV-1 subtype B-infected individuals and subsequently coexist with R5 HIV-1 variants. This relatively late appearance of X4 HIV-1 variants is poorly understood. Here we tested the neutralization sensitivity for soluble CD4 (sCD4) and the broadly neutralizing antibodies IgG1b12, 2F5, 4E10, and 2G12 of multiple coexisting clonal R5 and (R5)X4 (combined term for monotropic X4 and dualtropic R5X4 viruses) HIV-1 variants that were obtained at two time points after the first appearance of X4 variants in five participants of the Amsterdam Cohort Studies on HIV-1 infection and AIDS. Recently emerged (R5)X4 viruses were significantly more sensitive to neutralization by the CD4-binding-site-directed agents sCD4 and IgG1b12 than their coexisting R5 viruses. This difference was less pronounced at the later time point. Early (R5)X4 variants from two out of four patients were also highly sensitive to neutralization by autologous serum (50% inhibition at serum dilutions of >200). Late (R5)X4 viruses from these two patients were neutralized at lower serum dilutions, which suggested escape of X4 variants from humoral immunity. Autologous neutralization of coexisting R5 and (R5)X4 variants was not observed in the other patients. In conclusion, the increased neutralization sensitivity of HIV-1 variants during the transition from CCR5 usage to CXCR4 usage may imply an inhibitory role for humoral immunity in HIV-1 phenotype evolution in some patients, thus potentially contributing to the late emergence of X4 variants.  相似文献   

11.
The development of anti-human immunodeficiency virus (anti-HIV) neutralizing antibodies and the evolution of the viral envelope glycoprotein were monitored in rhesus macaques infected with a CCR5-tropic simian/human immunodeficiency virus (SHIV), SHIVSF162P4. Homologous neutralizing antibodies developed within the first month of infection in the majority of animals, and their titers were independent of the extent and duration of viral replication during chronic infection. The appearance of homologous neutralizing antibody responses was preceded by the appearance of amino acid changes in specific variable and conserved regions of gp120. Amino acid changes first appeared in the V1, V2, C2, and V3 regions and subsequently in the C3, V4, and V5 regions. Heterologous neutralizing antibody responses developed over time only in animals with sustained plasma viremia. Within 2 years postinfection the breadth of these responses was as broad as that observed in certain patients infected with HIV type 1 (HIV-1) for over a decade. Despite the development of broad anti-HIV-1 neutralizing antibody responses, viral replication persisted in these animals due to viral escape. Our studies indicate that cross-reactive neutralizing antibodies are elicited in a subset of SHIVSF162P4 infected macaques and that their development requires continuous viral replication for extended periods of time. More importantly, their late appearance does not prevent progression to disease. The availability of an animal model where cross-reactive anti-HIV neutralizing antibodies are developed may facilitate the identification of virologic and immunologic factors conducive to the development of such antibodies.  相似文献   

12.
Primary and laboratory-adapted variants of human immunodeficiency virus type 1 (HIV-1) exhibit a wide range of sensitivities to neutralization by antibodies directed against the viral envelope glycoproteins. An antibody directed against an artificial FLAG epitope inserted into the envelope glycoproteins of three HIV-1 isolates with vastly different neutralization sensitivities inhibited all three viruses equivalently. Thus, naturally occurring HIV-1 isolates that are neutralization resistant are not necessarily more impervious to the inhibitory consequences of bound antibody. Moreover, the binding affinity of the anti-FLAG antibody correlated with neutralizing potency, underscoring the dominant impact on neutralization of antibody binding to the envelope glycoproteins.  相似文献   

13.
The humoral response to HIV-1 infection has been demonstrated by a variety of immunoassays utilizing viral proteins. While several assays detect HIV-1 infection with high sensitivity and great specificity, little progress has been made to develop immunoassays correlative with disease progression and viral transmission. Antibodies toward the V3 domain of HIV-1 envelope can prevent virus infection and block virus-mediated cell fusion in vitro. Such properties may be critical to the course of the disease. Furthermore, understanding the role of neutralizing antibodies against HIV-1 during infection in humans and generating biologically relevant neutralizing antibodies are paramount to developing an efficacious AIDS vaccine. In this study we explored peptide binding and neutralization assays and their relation to predicting disease progression and viral transmission. Biologically relevant polyclonal and monoclonal neutralizing antibodies that were derived from natural HIV-1 infection of humans, experimental infections of chimpanzees, and viral envelope protein peptide immunizations were characterized. Comparison of V3-specific monoclonal antibodies by antigen-limited ELISA and a quantitative HIV-1 neutralization assay demonstrated a less than optimal predictive relationship between binding and neutralization potency. On the other hand, polyclonal sera from goats immunized with V3-specific peptides derived from three different HIV-1 strains, as well as sera from other HIV-1-infected individuals demonstrated correlation between binding affinity and neutralization.  相似文献   

14.

Background

Induction of broadly neutralizing antibodies, such as the monoclonal antibodies IgGb12, 2F5 and 2G12, is the objective of most antibody-based HIV-1 vaccine undertakings. However, despite the relative conserved nature of epitopes targeted by these antibodies, mechanisms underlying the sensitivity of circulating HIV-1 variants to broadly neutralizing antibodies are not fully understood. Here we have studied sensitivity to broadly neutralizing antibodies of HIV-1 variants that emerge during disease progression in relation to molecular alterations in the viral envelope glycoproteins (Env), using a panel of primary R5 HIV-1 isolates sequentially obtained before and after AIDS onset.

Principal Findings

HIV-1 R5 isolates obtained at end-stage disease, after AIDS onset, were found to be more sensitive to neutralization by TriMab, an equimolar mix of the IgGb12, 2F5 and 2G12 antibodies, than R5 isolates from the chronic phase. The increased sensitivity correlated with low CD4+ T cell count at time of virus isolation and augmented viral infectivity. Subsequent sequence analysis of multiple env clones derived from the R5 HIV-1 isolates revealed that, concomitant with increased TriMab neutralization sensitivity, end-stage R5 variants displayed envelope glycoproteins (Envs) with reduced numbers of potential N-linked glycosylation sites (PNGS), in addition to increased positive surface charge. These molecular changes in Env also correlated to sensitivity to neutralization by the individual 2G12 monoclonal antibody (mAb). Furthermore, results from molecular modeling suggested that the PNGS lost at end-stage disease locate in the proximity to the 2G12 epitope.

Conclusions

Our study suggests that R5 HIV-1 variants with increased sensitivity to broadly neutralizing antibodies, including the 2G12 mAb, may emerge in an opportunistic manner during severe immunodeficiency as a consequence of adaptive molecular Env changes, including loss of glycosylation and gain of positive charge.  相似文献   

15.
Induction of broadly cross-reactive neutralizing antibodies is a high priority for AIDS vaccine development but one that has proven difficult to be achieved. While most immunogens generate antibodies that neutralize a subset of T-cell-line-adapted strains of human immunodeficiency virus type 1 (HIV-1), none so far have generated a potent, broadly cross-reactive response against primary isolates of the virus. Even small increments in immunogen improvement leading to increases in neutralizing antibody titers and cross-neutralizing activity would accelerate vaccine development; however, a lack of uniformity in target strains used by different investigators to assess cross-neutralization has made the comparison of vaccine-induced antibody responses difficult. Thus, there is an urgent need to establish standard panels of HIV-1 reference strains for wide distribution. To facilitate this, full-length gp160 genes were cloned from acute and early subtype B infections and characterized for use as reference reagents to assess neutralizing antibodies against clade B HIV-1. Individual gp160 clones were screened for infectivity as Env-pseudotyped viruses in a luciferase reporter gene assay in JC53-BL (TZM-bl) cells. Functional env clones were sequenced and their neutralization phenotypes characterized by using soluble CD4, monoclonal antibodies, and serum samples from infected individuals and noninfected recipients of a recombinant gp120 vaccine. Env clones from 12 R5 primary HIV-1 isolates were selected that were not unusually sensitive or resistant to neutralization and comprised a wide spectrum of genetic, antigenic, and geographic diversity. These reference reagents will facilitate proficiency testing and other validation efforts aimed at improving assay performance across laboratories and can be used for standardized assessments of vaccine-elicited neutralizing antibodies.  相似文献   

16.
The human immunodeficiency virus envelope glycoproteins function as trimers on the viral surface, where they are targeted by neutralizing antibodies. Different monoclonal antibodies neutralize human immunodeficiency virus type 1 (HIV-1) infectivity by binding to structurally and functionally distinct moieties on the envelope glycoprotein trimer. By measuring antibody neutralization of viruses with mixtures of neutralization-sensitive and neutralization-resistant envelope glycoproteins, we demonstrate that the HIV-1 envelope glycoprotein trimer is inactivated by the binding of a single antibody molecule. Virus neutralization requires essentially all of the functional trimers to be occupied by at least one antibody. This model applies to antibodies differing in neutralizing potency and to virus isolates with various neutralization sensitivities. Understanding these requirements for HIV-1 neutralization by antibodies will assist in establishing goals for an effective AIDS vaccine.  相似文献   

17.
Understanding the interactions between human immunodeficiency virus type 1 (HIV-1) virions and antibodies (Ab) produced during acute HIV-1 infection (AHI) is critical for defining antibody antiviral capabilities. Antibodies that bind virions may prevent transmission by neutralization of virus or mechanically prevent HIV-1 migration through mucosal layers. In this study, we quantified circulating HIV-1 virion-immune complexes (ICs), present in approximately 90% of AHI subjects, and compared the levels and antibody specificity to those in chronic infection. Circulating HIV-1 virions coated with IgG (immune complexes) were in significantly lower levels relative to the viral load in acute infection than in chronic HIV-1 infection. The specificities of the antibodies in the immune complexes differed between acute and chronic infection (anti-gp41 Ab in acute infection and anti-gp120 in chronic infection), potentially suggesting different roles in immunopathogenesis for complexes arising at different stages of infection. We also determined the ability of circulating IgG from AHI to bind infectious versus noninfectious virions. Similar to a nonneutralizing anti-gp41 monoclonal antibody (MAb), purified plasma IgG from acute HIV-1 subjects bound both infectious and noninfectious virions. This was in contrast to the neutralizing antibody 2G12 MAb that bound predominantly infectious virions. Moreover, the initial antibody response captured acute HIV-1 virions without selection for different HIV-1 envelope sequences. In total, this study demonstrates that the composition of immune complexes are dynamic over the course of HIV-1 infection and are comprised initially of antibodies that nonselectively opsonize both infectious and noninfectious virions, likely contributing to the lack of efficacy of the antibody response during acute infection.  相似文献   

18.
The current lack of envelope glycoprotein immunogens that elicit broadly neutralizing antibody responses remains a major challenge for human immunodeficiency virus type 1 (HIV-1) vaccine development. However, the recent design and construction of stable soluble gp140 trimers have shown that some neutralization breadth can be achieved by using immunogens that better mimic the functional viral spike complex. The use of genetic delivery systems to drive the in vivo expression of such immunogens for the stimulation of neutralizing antibodies against HIV-1 may offer advantages by maintaining the quaternary structure of the trimeric envelope glycoproteins. Here, we describe the biochemical and immunogenic properties of soluble HIV-1 envelope glycoprotein trimers expressed by recombinant Semliki Forest virus (rSFV). The results presented here demonstrate that rSFV supports the expression of stable soluble gp140 trimers that retain recognition by conformationally sensitive antibodies. Further, we show that rSFV particle immunizations efficiently primed immune responses as measured after a single boost with purified trimeric gp140 protein, resulting in a Th1-biased antibody response. This differed from the Th2-biased antibody response obtained after repeated immunizations with purified gp140 protein trimers. Despite this difference, both regimens stimulated neutralizing antibody responses of similar potency. This suggests that rSFV may be a useful component of a viral vector prime-protein boost regimen aimed at stimulating both cell-mediated immune responses and neutralizing antibodies against HIV-1.  相似文献   

19.
Plasma samples from individuals infected with human immunodeficiency virus type 1 (HIV-1) are known to be highly strain specific in their ability to neutralize HIV-1 infectivity. Such plasma samples exhibit significant neutralizing activity against autologous HIV-1 isolates but typically exhibit little or no activity against heterologous strains, although some cross-neutralizing activity can develop late in infection. Monkeys infected with the simian-human immunodeficiency virus (SHIV) clone DH12 generated antibodies that neutralized SHIV DH12, but not SHIV KB9. Conversely, antibodies from monkeys infected with the SHIV clone KB9 neutralized SHIV KB9, but not SHIV DH12. To investigate the role of the variable loops of the HIV-1 envelope glycoprotein gp120 in determining this strain specificity, variable loops 1 and 2 (V1/V2), V3, or V4 were exchanged individually or in combination between SHIV DH12 and SHIV KB9. Despite the fact that both parental viruses exhibited significant infectivity and good replication in the cell lines examined, 3 of the 10 variable-loop chimeras exhibited such poor infectivity that they could not be used further for neutralization assays. These results indicate that a variable loop that is functional in the context of one particular envelope background will not necessarily function within another. The remaining seven replication-competent chimeras allowed unambiguous assignment of the sequences principally responsible for the strain specificity of the neutralizing activity present in SHIV-positive plasma. Exchange of the V1/V2 loop sequences conferred a dominant loss of sensitivity to neutralization by autologous plasma and a gain of sensitivity to neutralization by heterologous plasma. Substitution of V3 or V4 had little or no effect on the sensitivity to neutralization. These data demonstrate that the V1/V2 region of HIV-1 gp120 is principally responsible for the strain specificity of the neutralizing antibody response in monkeys infected with these prototypic SHIVs.  相似文献   

20.

Background

The rapid and continual viral escape from neutralizing antibodies is well documented in HIV-1 infection. Here we report in vivo emergence of viruses with heightened sensitivity to neutralizing antibodies, sometimes paralleling the development of neutralization escape.

Methodology/Principal Findings

Sequential viral envs were amplified from seven HIV-1 infected men monitored from seroconversion up to 5 years after infection. Env-recombinant infectious molecular clones were generated and tested for coreceptor use, macrophage tropism and neutralization sensitivity to homologous and heterologous serum, soluble CD4 and monoclonal antibodies IgG1b12, 2G12 and 17b. We found that HIV-1 evolves sensitivity to contemporaneous neutralizing antibodies during infection. Neutralization sensitive viruses grow out even when potent autologous neutralizing antibodies are present in patient serum. Increased sensitivity to neutralization was associated with susceptibility of the CD4 binding site or epitopes induced after CD4 binding, and mediated by complex envelope determinants including V3 and V4 residues. The development of neutralization sensitive viruses occurred without clinical progression, coreceptor switch or change in tropism for primary macrophages.

Conclusions

We propose that an interplay of selective forces for greater virus replication efficiency without the need to resist neutralizing antibodies in a compartment protected from immune surveillance may explain the temporal course described here for the in vivo emergence of HIV-1 isolates with high sensitivity to neutralizing antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号