首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tensor of the high-frequency conductivity of a plasma created via tunnel ionization of atoms in the field of linearly or circularly polarized radiation is derived. It is shown that the real part of the conductivity tensor is highly anisotropic. In the case of a toroidal velocity distribution of photoelectrons, the possibility of amplification of a weak high-frequency field polarized at a sufficiently large angle to the anisotropy axis of the initial nonequilibrium distribution is revealed.  相似文献   

2.
Polarization bremsstrahlung from a fast hydrogen-like ion in a plasma is calculated and analyzed in the first Born approximation with allowance for the contribution from two radiation mechanisms (channels): (i) radiation from the conversion of the electromagnetic field of the ion into a real photon by plasma electrons and (ii) radiation from the virtual excitation of the bound electron of the ion. It is shown that the intensity of the polarization bremsstrahlung generated via the second channel is sharply peaked in narrow spectral-angular ranges around the eigenfrequencies of the electron core of the fast ion and, moreover, the spectral-angular intensity distribution depends strongly on the velocity of the incident particle. The dependence of both the polarization bremsstrahlung mechanisms on the plasma parameters is investigated.  相似文献   

3.
4.
A nonlinear differential equation describing oscillations of the chemical potential in a one-dimensional steady-state wave propagating in a degenerate electron gas against an immobile neutralizing ion background is derived, investigated, and solved exactly. It is found that the wave phase velocity is bounded below by a critical velocity, whose exact value is obtained.  相似文献   

5.
The nonlinear interaction of a relativistic electron beam with a plasma is investigated numerically on the basis of the extended notions of the physical quantities that enter the linear dispersion relation. Extending the notions of the wave frequency, wavenumber, and wave phase velocity to the nonlinear stage of an instability makes it possible to analyze the evolution of the Cherenkov and plasma resonances and to study how they affect the saturation of the wave amplitude. A model of the beam-plasma instability in which the growth rate is calculated from the corresponding linear hydrodynamic formula on the basis of the results obtained using a numerical kinetic model makes it possible to establish the applicability range of the hydrodynamic approximation for beams with different energies.  相似文献   

6.
Results are presented from experimental studies of the electromagnetic acceleration of a hydrogen or deuterium plasma in an inverse Z-pinch geometry. The acceleration dynamics of the plasma shell was simulated in a zero-dimensional model and was measured with magnetic probes. The ion energy spectrum in the plasma flow was determined with the help of ion collectors by the time-of-flight technique.  相似文献   

7.
It is shown that the two-fluid electrohydrodynamic equations for a transversely homogeneous flow of cold ions and Boltzmannian electrons in the ion-acoustic region are reduced to the Boussinesq equation. Using a two-soliton solution as an example, the nonlinear mechanism of collisionless relaxation of a supersonic plasma flow toward a steady state in the form of a double space charge layer is demonstrated.  相似文献   

8.
A study is made of the nonlinear dynamics of solitary vortex structures in an inhomogeneous magnetized dissipative plasma. A nonlinear transport equation for long-wavelength drift wave structures is derived with allowance for the nonuniformity of the plasma density and temperature equilibria, as well as the magnetic and collisional viscosity of the medium and its friction. The dynamic equation describes two types of nonlinearity: scalar (due to the temperature inhomogeneity) and vector (due to the convectively polarized motion of the particles of the medium). The equation is fourth order in the spatial derivatives, in contrast to the second-order Hasegawa-Mima equations. An analytic steady solution to the nonlinear equation is obtained that describes a new type of solitary dipole vortex. The nonlinear dynamic equation is integrated numerically. A new algorithm and a new finite difference scheme for solving the equation are proposed, and it is proved that the solution so obtained is unique. The equation is used to investigate how the initially steady dipole vortex constructed here behaves unsteadily under the action of the factors just mentioned. Numerical simulations revealed that the role of the vector nonlinearity is twofold: it helps the dispersion or the scalar nonlinearity (depending on their magnitude) to ensure the mutual equilibrium and, thereby, promote self-organization of the vortical structures. It is shown that dispersion breaks the initial dipole vortex into a set of tightly packed, smaller scale, less intense monopole vortices-alternating cyclones and anticyclones. When the dispersion of the evolving initial dipole vortex is weak, the scalar nonlinearity symmetrically breaks a cyclone-anticyclone pair into a cyclone and an anticyclone, which are independent of one another and have essentially the same intensity, shape, and size. The stronger the dispersion, the more anisotropic the process whereby the structures break: the anticyclone is more intense and localized, while the cyclone is less intense and has a larger size. In the course of further evolution, the cyclone persists for a relatively longer time, while the anticyclone breaks into small-scale vortices and dissipation hastens this process. It is found that the relaxation of the vortex by viscous dissipation differs in character from that by the frictional force. The time scale on which the vortex is damped depends strongly on its typical size: larger scale vortices are longer lived structures. It is shown that, as the instability develops, the initial vortex is amplified and the lifetime of the dipole pair components-cyclone and anticyclone-becomes longer. As time elapses, small-scale noise is generated in the system, and the spatial structure of the perturbation potential becomes irregular. The pattern of interaction of solitary vortex structures among themselves and with the medium shows that they can take part in strong drift turbulence and anomalous transport of heat and matter in an inhomogeneous magnetized plasma.  相似文献   

9.
A solution is obtained in the form of coupled nonlinear periodic space-charge waves propagating in a magnetoactive plasma. The wave spectrum in the vicinity of the critical point, where the number of harmonics increases substantially, is found to fall with harmonic number as ∝ s ?1/3. Periodic space-charge waves are invoked to explain the zebra pattern in the radio emission from solar flares.  相似文献   

10.
Conditions for the propagation of a slow extraordinary wave in dense magnetized plasma are found. A solution to the set of relativistic hydrodynamic equations and Maxwell’s equations under the plasma resonance conditions, when the phase velocity of the nonlinear wave is equal to the speed of light, is obtained. The deviation of the wave frequency from the resonance frequency is accompanied by nonlinear longitudinal-transverse oscillations. It is shown that, in this case, the solution to the set of self-consistent equations obtained by averaging the initial equations over the period of high-frequency oscillations has the form of an envelope soliton. The possibility of excitation of a nonlinear wave in plasma by an external electromagnetic pulse is confirmed by numerical simulations.  相似文献   

11.
It is shown that the nonlinear currents generated in plasma by a radiation pulse with a frequency exceeding the electron plasma frequency change substantially due to a reduction in the effective electron–ion collision frequency.  相似文献   

12.
The polarization bremsstrahlung from thermal electrons scattered by the Debye sphere of an ion in a plasma is studied in the quasiclassical approximation. The model of the local plasma frequency is used to check the validity of the asymptotic expression for the polarizability of the electron cloud of an ion in the high-frequency range. This asymptotic expression is then used to derive a formula for the intensity of the total effective polarization bremsstrahlung. The R factor (the ratio of the contribution from the polarization bremsstrahlung to the contribution from conventional static bremsstrahlung) is obtained as a function of the plasma coupling parameter and electron density in order to analyze the role of the polarization bremsstrahlung in the total bremsstrahlung of the thermal plasma electrons. The spectral intensity of the effective polarization bremsstrahlung is calculated in the rotational approximation, which was previously employed in the theory of conventional static bremsstrahlung. It is shown that the spectral intensity of the polarization bremsstrahlung from thermal electrons scattered by the Debye sphere around an ion, as compared with the polarization bremsstrahlung by fast superthermal electrons, decreases more gradually with increasing frequency.  相似文献   

13.
Nonlinear oscillations of a semiconductor plasma with a low-density electron beam in the absence of an external magnetic field are studied in the hydrodynamic approximation. The beam is assumed to be nonrelativistic and monoenergetic. Cases are studied in which the Langmuir frequency of the electron oscillations in a semiconductor is much higher or much lower than the electron momentum relaxation rate. The self-similar solution obtained for the first case describes the damping of the nonlinear oscillations of the wave potential. Numerical analysis of the second case shows that the electric field distribution in the beam may correspond to that in a shock wave.  相似文献   

14.
Nonlinear optical absorption of photosynthetic pigment molecules in leaves   总被引:1,自引:0,他引:1  
A mathematical formulation of the relationship between optical absorption coefficient of photosynthetic pigment molecules and light intensity was developed. It showed that physical parameters of photosynthetic pigment molecule (i.e., light absorption cross-section of photosynthetic pigment molecule, its average lifetime in the excited state, total photosynthetic pigment molecules, the statistical weight, or degeneracy of energy level of photosynthetic pigment molecules in the ground state and in the excited state) influenced on both the light absorption coefficient and effective light absorption cross-section of photosynthetic pigment molecules. Moreover, it also showed that both the light absorption coefficient and effective light absorption cross-section of photosynthetic pigment molecules were not constant, they decreased nonlinearly with light intensity increasing. The occupation numbers of photosynthetic pigment molecules in the excited states increased nonlinearly with light intensity increasing.  相似文献   

15.
The inverse skin effect and its influence on the dynamics of high-current Z-pinch and plasma focus discharges in deuterium are analyzed. It is shown that the second compression responsible for the major fraction of the neutron yield can be interpreted as a result of the inverse skin effect resulting in the axial concentration of the longitudinal current density and the appearance of a reversed current in the outer layers of plasma pinches. Possible conditions leading to the enhancement of the inverse skin effect and accessible for experimental verification by modern diagnostics are formulated.  相似文献   

16.
The water-seeking behavior (WR) of toads (Bufo viridis) was investigated. Fully hydrated toads that are allowed free choice of wet or dry filter paper voluntarily and spontaneously select to sit on water-soaked paper at a regular frequency during trials. Dehydration of bladder-emptied toads by 14% elicits WR in all animals. Injection of aldosterone or angiotensin-I reduced the dehydration threshold to 7% weight loss. WR frequency increased when plasma osmolality was elevated by injection of NaCl or other solutes (both ionic and non-ionic). Only urea, to which cell membranes are highly permeable, was the exception that did not produce this response. The increase in WR frequency induced by elevated plasma osmolality was augmented by injection of aldosterone or angiotensin-I. In vivo water uptake, measured in a water bath, was increased by an NaCl or oxytocin injection, but not by aldosterone. It is concluded that elevated plasma osmolality induces an increase in WR frequency that is separate and prior to the water uptake process. Different hormones are involved in each step.  相似文献   

17.
A study is made of the propagation of ion acoustic waves in a collisionless unmagnetized dusty plasma containing degenerate ion and electron gases at nonzero temperatures. In linear theory, a dispersion relation for isothermal ion acoustic waves is derived and an exact expression for the linear ion acoustic velocity is obtained. The dependence of the linear ion acoustic velocity on the dust density in a plasma is calculated. An analysis of the dispersion relation reveals parameter ranges in which the problem has soliton solutions. In nonlinear theory, an exact solution to the basic equations is found and examined. The analysis is carried out by Bernoulli’s pseudopotential method. The ranges of the phase velocities of periodic ion acoustic waves and the velocities of solitons are determined. It is shown that these ranges do not overlap and that the soliton velocity cannot be lower than the linear ion acoustic velocity. The profiles of the physical quantities in a periodic wave and in a soliton are evaluated, as well as the dependence of the critical velocity of solitons on the dust density in a plasma.  相似文献   

18.
The excitation of plasma waves during the injection of an unmodulated and a density-modulated electron beam into a semi-infinite cold plasma is investigated. It is shown that the Langmuir oscillation energy accumulated in the plasma increases substantially near the plasma boundary and that the dimension of the region where the Langmuir oscillation energy is localized decreases with time.  相似文献   

19.
The basic properties of heavy-ion-acoustic (HIA) waves have been investigated in a collisionless plasma system which is supposed to be composed of nonthermal electrons, Boltzmann distributed light ions, and adiabatic positively charged inertial heavy ions. The Kortewg-de Vries and Burgers equations are derived in nonplanar (cylindrical and spherical) geometry by employing the standard reductive perturbation method for studying the basic features (viz. amplitude, phase speed, etc.) of HIA solitary and shock waves, which are associated with either positive or negative potential. It is found that the effects of nonplanar geometry, adiabaticity of positively charged inertial heavy ions, the presence of nonthermal (Cairns distributed) electrons, and number densities of the plasma components significantly modify the basic features of nonplanar HIA waves. It has been observed that the properties of solitary and shock waves associated with HIA waves in a nonplanar geometry differ from those in a planar geometry. The implications of our results may be helpful in understanding the electrostatic perturbations in various laboratory and astrophysical plasma environments.  相似文献   

20.
A nonlinear relativistic quantum theory of stimulated Cherenkov emission of longitudinal waves by a relativistic monoenergetic electron beam in a cold isotropic plasma is presented. The theory makes use of a quantum model based on the Klein-Gordon equation. The instability growth rates are obtained in the linear approximation and are shown to go over to the familiar growth rates in the classical limit. The mechanisms for the nonlinear saturation of relativistic Cherenkov beam instabilities are described with allowance for quantum effects, and the corresponding analytic solutions are derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号