首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
采用脱叶性不同的4个甘蔗品种为材料,研究了在成熟期叶鞘纤维素酶活性对蔗叶脱落的影响。结果表明,纤维素酶活性影响甘蔗叶片脱落,在收获期叶鞘纤维素酶活性与植株脱落率均达到最高。不同叶位中,+10叶位纤维素酶活性最高。相关性分析表明,4个甘蔗品种的+10叶位叶鞘纤维素酶活性与脱落率呈正相关。  相似文献   

2.
李丽  牛俊峰  文志  崔健  王效科 《生态学报》2016,36(21):6804-6811
臭氧和干旱是威胁我国北方城市植物生长的两大重要因素。于2012年利用开顶式气室,通过设置4个处理(AW-大气环境和水分充足;AW+60-大气增加60 nL/L臭氧+水分充足;AD-大气+干旱处理;AD+60-大气增加60 nL/L臭氧+干旱处理),开展了大气臭氧浓度升高(以下简称"臭氧")和干旱对元宝枫秋季变色期主要色素含量及脱落酸(ABA)含量的影响研究。结果表明:(1)早生叶在臭氧处理后,总叶绿素和类胡萝卜素分别下降了21%和29.6%、花青苷和类黄酮相对含量显著升高了34.1%和7.3%、脱落酸含量增加了19.8%。干旱处理后,早生叶总叶绿素显著下降了18.7%、花青苷和类黄酮相对含量分别显著升高了37%和7.4%、脱落酸含量显著升高了13%。叶片的上述生理变化将会导致叶片提前变红、叶片早衰和提前脱落。(2)晚生叶在干旱处理后总叶绿素含量减少了18.8%,脱落酸含量增加了33.4%,臭氧以及与干旱共同处理未对晚生叶产生显著影响。(3)臭氧和干旱共同处理后,早生叶总叶绿素含量、花青苷和叶片脱落酸含量存在显著交互作用,交互作用缓解了叶片总叶绿素的下降和花青苷的上升,但未缓解叶片脱落酸含量的增加。综上,早生叶和晚生叶对臭氧和干旱处理的响应不同,早生叶对臭氧处理响应大于晚生叶,而晚生叶对干旱更敏感。臭氧和干旱处理均加速了叶片衰老,二者共同处理后叶片脱落风险增加。  相似文献   

3.
采用酶联免疫法和茎基部取样的方式,以强宿根甘蔗品种‘新台糖22号’为对照,通过田间试验研究了同一组合(‘粤糖97-20’×ROC25)杂交后代分离产生的强宿根甘蔗品(种)系(‘云蔗06-407’、‘云蔗06-415’)和弱宿根甘蔗品(种)系(‘云蔗06-408’、‘云蔗06-416’)宿根萌发期内源激素含量的变化与甘蔗宿根性的关系。结果显示:(1)宿根萌发过程中,强宿根与弱宿根甘蔗茎基部IAA含量、ZR含量和ZR/IAA比值的变化波动大,但差异不显著。(2)强宿根与弱宿根甘蔗茎基部GA3和ABA含量、IAA/ABA和GA3/ABA比值的变化差异较大,其中ABA含量、IAA/ABA和GA3/ABA比值的差异显著,是与甘蔗宿根性关系密切的3个重要参数。(3)强宿根甘蔗ABA含量高于弱宿根甘蔗,而其IAA/ABA和GA3/ABA比值小于弱宿根甘蔗,且IAA/ABA和GA3/ABA比值随甘蔗宿根性的减弱而增大。研究认为,在宿根萌发期,甘蔗宿根性越强,ABA含量越高,IAA/ABA和GA3/ABA比值越小;而这3个重要参数均与ABA有关,进行甘蔗宿根性评价应着重参考ABA含量,同时结合IAA/ABA和GA3/ABA比值再进行深入分析鉴定。  相似文献   

4.
在实验室水培条件下,研究了NaCl胁迫下玉米幼苗不同器官中Na+、K+,Ca2+,Mg 2+和Cl-含量的变化.结果表明:玉米各个部分Na+和Cl-含量、Na+/K+和Na+/Ca2+比值均随着培养液中NaCl浓度的增加而迅速提高,Na+,K+和Cl-含量的变化幅度为根系>成熟叶叶鞘>生长叶>成熟叶叶片,玉米幼苗根系最易受外界离子浓度的影响,叶片受外界环境影响较小;各器官中Ca2+、Mg2+对盐胁迫的响应不一致,NaCl胁迫使根系中Ca2+、Mg2+含量下降,成熟叶叶鞘中Mg2+含量变化规律性不明显,而NaCl胁迫下,成熟叶叶片中Ca2+、Mg2+含量增加;玉米幼苗具有拒Na+机制,具有一定的耐盐性,它的耐盐性是通过根和成熟叶叶鞘来实现的,Na+主要贮存在根系和成熟叶叶鞘中,而向成熟叶叶片和生长叶中运输较少;成熟叶叶鞘同时还具有拒Cl-能力.  相似文献   

5.
甘蔗组织中游离氨基酸组分和含量研究   总被引:1,自引:0,他引:1  
李杨瑞   《广西植物》1990,10(3):228-232
在甘蔗幼苗中,各个器官的丙氨酸含量都比较高,但在完全展开叶的叶片和叶鞘中丝氨酸含量更高;游离氨基酸总量的分布为完全展开叶叶片》完全展开叶叶鞘,苗根>心叶、幼茎,在伸长盛期和工艺成熟前期9个甘蔗基因型+1叶均以丙氨酸占优势。不同基因型的各种游离氨基酸含量都有明显的差异。在工艺成熟前期,早熟基因型的游离氨基酸总量比较低。伸长盛期与工艺成熟前期游离氨基酸总量之比值也与不同基因型的熟性密切相关,中晚熟品种的明显较低.早熟品种的较高,三个细茎早熟原种材料的更高。  相似文献   

6.
【目的】探明朱砂叶螨Tetranychus cinnabarinus持续为害对玉米Zea mays叶片内茉莉酸(jasmonic acid,JA)、水杨酸(salicylic acid,SA)、乙烯(ethylene,ET)、一氧化氮(nitricoxide,NO)、脱落酸(abscisic acid,ABA)和过氧化氢(hydrogen peroxide,H2O2)6个防御信号分子的诱导作用。【方法】室内人工接螨(10,20和30头/叶),采用分光光度法(SP)、高效液相色谱法(HPLC)和酶联免疫法(ELISA),测定了朱砂叶螨持续为害0,24,48,72和96 h后,玉米幼苗叶片内6个信号分子的含量。【结果】朱砂叶螨持续刺吸为害玉米幼苗叶片后,JA,ABA和H2O23个信号分子含量在叶螨刺吸为害24 h内迅速上升,在24 h时达高峰值,叶螨密度为30头/叶时其含量分别为同期未接螨对照的4.13,3.84和3.20倍,24-48 h内迅速下降;此后,ABA和H2O2含量维持在较低水平,而JA含量在48-96 h内又上升至次高峰值。NO含量则在24-48 h内上升较快,48 h时达最高,叶螨密度为30头/叶时其含量为同期未接螨对照的5.09倍。SA和ET含量在96 h内均随刺吸时间的延长而增大,96 h时最高,叶螨密度为30头/叶时其含量分别为同期未接螨对照的5.17和2.99倍。叶螨密度为30头/叶时,6个信号分子含量均显著高于同期未接螨对照(P0.05)。【结论】朱砂叶螨为害对玉米叶片内JA,SA,ET,NO,ABA和H2O2均具有诱导作用,且6个信号分子在叶螨持续为害玉米叶片后循序被诱导。  相似文献   

7.
聚乙二醇模拟的干旱胁迫下,2个品种番茄幼苗根和叶中脱落酸(ABA)和茉莉酸(JA)含量均迅速积累,叶中ABA累积比根中滞后;游离态亚精胺(fSpd)、精胺(fspm)、腐胺(fPut)含量和多胺氧化酶(PAO)活性均先上升,12 h时达到峰值后下降,耐旱性强的品种'毛粉802'幼苗根和叶中积累ABA、JA和spd、Spm的能力明显强于耐旱性弱的品种'皇冠'.'皇冠'的PAO活性提高程度大于'毛粉802'.番茄根和叶中多胺含量和PAO活性呈显著正相关.内源多胺的积累诱导ABA和JA含量的升高,从而导致番茄幼苗的耐旱性增强.  相似文献   

8.
以盆栽的C4植物-湖南稷子(Echinochloa frumentacea)为材料,用6-苄氨基嘌呤(BA)和脱落酸(ABA)定位涂抹湖南稷子的穗、上位和下位叶片,分析了植物体激素平衡的局部改变对整株水平上Na^ 、K^ 和游离脯氨酸分配的调节。实验结果表明,ABA和具有细胞分裂素活性的BA是调控Na^ 、K^ 及游离脯氨酸在不同层位叶中分配的重要因素。ABA涂抹湖南稷子的上位叶片,上位叶片中的Na^ 比其下位叶片高35.0%;用ABA涂抹湖南稷子的下位叶片,下位叶片中的K^ 比其上位叶片高31.4%,下位叶鞘中的K^ 比其上位叶鞘高53.7%。用BA涂抹湖南稷子的下位叶片,下位叶片中的K^ 和脯氨酸分别比其上位叶片高16.5%和31.7%;用BA或ABA定位涂抹植物地上不同部位,引起植物整株水平上Na^ 、K^ 向光合作用强的部位,特别是向活跃期的穗中选择性运输的能力增强,游离脯氨酸也多集中于代谢旺盛的光合器官和生殖器官。  相似文献   

9.
采用沙培称重法研究冠菌素对玉米幼苗光合参数及内源激素系统影响的结果表明,干旱胁迫下,0.01μmol·L-1冠菌素显著增加玉米幼苗茎基部粗、根长、干鲜重、光合速率、蒸腾速率和气孔导度,降低胞间二氧化碳浓度,提高幼苗的ABA和1-氨基环丙烷-1-羧酸(ACC)含量。叶片与根中ABA/GA3大时耐旱性增大。  相似文献   

10.
以红橘、朱橘、土橘、枳、枳橙、实生酸柚、实生甜橙、黄柑为材料,进行不同降水量的长期干旱胁迫后,测定生物量、抗旱系数及叶片中赤霉素(GA1+3)、玉米素核苷(ZR)、生长素(IAA)、脱落酸(ABA)含量,分析GA1+3、ZR、IAA、ABA的相对含量变化及ABA/GA1+3、ABA/ZR、ABA/IAA与8个种类柑橘抗旱性的关系.结果表明:在降水量低于1200 mm(对照)条件下,随降水量的减少不同种类柑橘的生物量明显降低,其抗旱系数及抗旱力大小顺序为朱橘红橘枳土橘枳橙实生酸柚实生甜橙黄柑.不同种类柑橘叶片中ABA含量随降水量的减少而增加,GA1+3、ZR和IAA含量随降水量的减少而降低.在抗旱性强的柑橘种类中,ABA/GA1+3和ABA/ZR的增加幅度大,ABA/IAA变化与种间抗旱力的关联度不大.ABA和GA1+3的相对含量与柑橘抗旱系数分别呈极显著正相关和极显著负相关,ZR的相对含量与抗旱性系数呈极显著或显著负相关,IAA的相对含量与抗旱性系数相关性不明显.对柑橘抗旱性的促进效果,以ABA最大,其次为GA1+3和ZR,IAA最小.  相似文献   

11.
The involvement of abscisic acid (ABA) in the process of leaf abscission induced by 1-aminocyclopropane-1-carboxylic acid (ACC) transported from roots to shoots in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings grown under water stress was studied using norflurazon (NF). Water stress induced both ABA (24-fold) and ACC (16-fold) accumulation in roots and arrested xylem flow. Leaf bulk ABA also increased (8-fold), although leaf abscission did not occur. Shortly after rehydration, root ABA and ACC returned to their prestress levels, whereas sharp and transitory increases of ACC (17-fold) and ethylene (10-fold) in leaves and high percentages of abscission (up to 47%) were observed. NF suppressed the ABA and ACC accumulation induced by water stress in roots and the sharp increases of ACC and ethylene observed after rewatering in leaves. NF also reduced leaf abscission (7-10%). These results indicate that water stress induces root ABA accumulation and that this is required for the process of leaf abscission to occur. It was also shown that exogenous ABA increases ACC levels in roots but not in leaves. Collectively, the data suggest that ABA, the primary sensitive signal to water stress, modulates the levels of ethylene, which is the hormonal activator of leaf abscission. This assumption implies that root ACC levels are correlated with root ABA amounts in a dependent way, which eventually links water status to an adequate, protective response such as leaf abscission.  相似文献   

12.
 The hormonal signals controlling fruitlet abscission induced by sugar shortage in citrus were identified in Satsuma mandarin, Citrus unshiu (Mak.) Marc, cv. Clausellina and cv. Okitsu. Sugar supply, hormonal responses and fruitlet abscission were manipulated through full, partial or selective leaf removals at anthesis and thereafter. In developing fruitlets, defoliations reduced soluble sugars (up to 98%), but did not induce nitrogen and water deficiencies. Defoliation-induced abscission was preceded by rises (up to 20-fold) in the levels of abscisic acid (ABA) and 1-aminocyclopropane-1-carboxylic acid (ACC) in fruitlets. Applications to defoliated plants showed that ABA increased ACC levels (2-fold) and accelerated fruitlet abscission, whereas norflurazon and 2-aminoethoxyvinyl glycine reduced ACC (up to 65%) and fruitlet abscission (up to 40%). Only the full defoliation treatment reduced endogenous gibberellin A1 (4-fold), whereas exogenous gibberellins had no effect on abscission. The data indicate that fruitlet abscission induced by carbon shortage in citrus is regulated by ABA and ACC originating in the fruits, while gibberellins are apparently implicated in the maintenance of growth. In this system, ABA may act as a sensor of the intensity of the nutrient shortage that modulates the levels of ACC and ethylene, the activator of abscission. This proposal identifies ABA and ACC as components of the self-regulatory mechanism that adjusts fruit load to carbon supply, and offers a physiological basis for the photoassimilate competition-induced abscission occurring under natural conditions. Received: 19 February 1999 / Accepted: 14 August 1999  相似文献   

13.
Intact plants of Xanthium strumarium L. were subjected to a water stress-recovery cycle. As the stress took effect, leaf growth ceased and stomatal resistance increased. The mature leaves then wilted, followed by the half expanded ones. Water, solute, and pressure potentials fell steadily in all leaves during the rest of the stress period. After 3 days, the young leaves lost turgor and the plants were rewatered. All the leaves rapidly regained turgor and the younger ones recommenced elongation. Stomatal resistance declined, but several days elapsed before pre-stress values were attained.

Abscisic acid (ABA) and phaseic acid (PA) levels rose in all the leaves after the mature ones wilted. ABA-glucose ester (ABA-GE) levels increased to a lesser extent, and the young leaves contained little of this conjugate. PA leveled off in the older leaves during the last 24 hours of stress, and ABA levels declined slightly. The young leaves accumulated ABA and PA throughout the stress period and during the 14-hour period immediately following rewatering. The ABA and PA contents, expressed per unit dry weight, were highest in the young leaves. Upon rewatering, large quantities of PA appeared in the mature leaves as ABA levels fell to the pre-stress level within 14 hours. In the half expanded and young leaves, it took several days to reach pre-stress ABA values. ABA-GE synthesis ceased in the mature leaves, once the stress was relieved, but continued in the half expanded and young leaves for 2 days.

Mature leaves, when detached and stressed, accumulated an amount of ABA similar to that in leaves on the intact plant. In contrast, detached and stressed young leaves produced little ABA. Detached mature leaves, and to a lesser extent the half expanded ones, rapidly catabolized ABA to PA and ABA-GE, but the young leaves did not. Studies with radioactive (±)-ABA indicated that in young leaves the conversion of ABA to PA took place at a much lower rate than in mature ones. Leaves of all ages rapidly conjugated PA to PA-glucose ester. Furthermore, when half expanded leaves were stressed on the intact plant, their rate of ABA catabolism was enhanced, an effect not observed in the young leaves.

In conclusion, young leaves on intact Xanthium plants produce little stress-induced ABA themselves, but due to import and a low rate of catabolism accumulate more ABA and PA than mature leaves.

  相似文献   

14.
The responses of salt‐sensitive citrus rootstocks to 200 m M NaCl were periodically determined on seedlings of citrange Carrizo ( Citrus sinensis [L.] Osbeck × Poncirus trifoliata [L.] Raf) during 30 days. The stressed seedlings adjusted osmotically, reduced stomatal conductance, increased proline content and ethylene production, and showed massive leaf abscission (92%). The salt shock also increased abscisic acid (ABA) and aminocyclopropane‐1‐carboxylic acid (ACC) in roots, xylem fluid and leaves, and in addition promoted Cl accumulation. The pattern of change of ABA, ACC and proline followed a two‐phase response: an initial transient increase (10‐12 days) overlapping with a gradual and continuous accumulation. This biphasic response appears to be compatible with the proposal that the transitory hormonal rises are induced by the osmotic component of salinity, whereas the Cl increase determines the subsequent accumulations. During the second phase, Cl levels correlated with abscission in leaves. Production of leaf ethylene was also concomitant with the increase in the abscission rate. Salt‐induced abscission was either reduced with CoCl2 (52%) or inhibited with silver thiosulphate (14%). The results suggest that in salt‐stressed citrus, leaf abscission is induced by the chloride build‐up through a mechanism that stimulates leaf ACC synthesis and further conversion to ethylene.  相似文献   

15.
Radermachera sinica L. is an ornamental plant with demonstrated sensitivity to ethylene-induced leaf abscission. In this study, we examine the relationship between abscisic acid (ABA) and ethylene in initiating the abscission response. Treatment with 1 l L\s-1 of ethylene, 1 mM 1-aminocyclopropane-1-carboxylic acid (ACC) or 1 mM ABA resulted in complete defoliation of leaf explants. Application of 0.125 mM silver thiosulfate (STS) inhibited ethylene- and ACC-induced abscission but had no effect on explants treated with ABA. The ABA-induced abscission was unaffected by treatment with aminoethoxyvinylglycine (AVG) or aminooxyacetic acid (AOA). Treatment of explants with 1 mM cobalt chloride (CoCl2) or 2000 l L\s-1 of norbornadiene (NBD) completely inhibited abscission in explants treated with 1 l L\s-1 ethylene or 1 mM ACC but they were only marginally effective in blocking ABA-induced abscission despite the lower level of endogenous ethylene. ABA appeared to increase the sensitivity of explants to ethylene. However, the evidence suggests that ABA may also function independent of ethylene to induce leaf abscission in R. sinica.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - AOA aminooxyacetic acid - AVG aminoethoxyvinylglycine - CoCl2 cobalt chloride - NBD norbornadiene - STS silver thiosulfate  相似文献   

16.
Lavee S  Martin GC 《Plant physiology》1981,67(6):1204-1207
1-Aminocyclopropane-1-carboxylic acid (ACC) supplied via the cut base of detached olive shoots caused a burst of ethylene from leaves, but other cyclopropanes tested did not exhibit this effect. Ethephon (ET) and another ethylene-releasing compound caused a prolonged increase in ethylene evolution. ACC had only a very limited effect on leaf abscission regardless of concentration, whereas shoots placed with cut bases in ET for 60 to 80 minutes exhibited 100% leaf abscission within 90 hours. Shoots with inflorescences treated with ET just prior to anthesis began to wilt in vitro within 20 to 30 hours and failed to exhibit leaf abscission. At earlier stages of development, ET induced more leaf abscission on reproductive shoots than on vegetative shoots. It is suggested that the duration of ethylene evolution from the leaves governs their potential for abscission and that bursts of ethylene evolution even though large in amount may not induce abscission.  相似文献   

17.
To understand the relationship among soil and plant water status, plant physiology, and the hormonal profiles associated with it, abscisic acid (ABA) and its catabolites [phaseic acid (PA), dihydrophaseic acid (DPA), 7-hydroxy-ABA, 8′-hydroxy-ABA, neophaseic acid, and abscisic acid glucose ester (ABA-GE)] in leaves and berries from wine grape cultivar Baco noir (Folle blanche × Vitis riparia) were analyzed. The experiment was conducted during the growing seasons 2006 and 2007 in an irrigation trial set up in a commercial vineyard located in Niagara-on-the-Lake, ON, Canada. ABA and its metabolites were quantified using liquid chromatography with ion trap combined with electrospray ionization-mass spectrometry. The hormonal profile indicated a direct relationship between the amount of ABA and climatic factors. The ABA varied between 582 and 4,026 ng g?1 dry matter (DM), DPA between 417 and 562 ng g?1, and ABA-GE between 337 and 2,764 ng g?1 DM. At many sampling times PA in the leaves was undetectable, and its highest concentration (260 ng g?1 DM) was at beginning of July 2007. ABA followed different catabolic pathways depending on the plant water status. ABA was likely catabolized by conjugation to form ABA-GE in treatments at higher water deficit levels, whereas in treatments with high water status, the oxidation pathway leading to DPA or PA was likely preferred. The ABA and ABA-GE concentrations in the berries at harvest showed high correlation with soil and plant water status.  相似文献   

18.
Changes in growth parameters, root and leaf anatomy, and stress hormone contents in Cd-stressed soybean (Glycine max L.) seedlings were investigated. Under treatment with 40 µM CdCl2, the whole plant, root and leaf FW and DW significantly decreased. Also, the whole plant and root length decreased, as well as the chlorophyll and carotenoid contents. This heavy metal affected root and leaf anatomy. In comparison to control, root diameter increased as a consequence of the greater size of the cortex and the vascular cylinder area, and vascular tissues were markedly affected by Cd. In leaflets, the curvature of the mesophyll in internerval areas was observed after Cd treatment. Cd also affected the mesophyll thickness which was reduced by the presence of shorter and narrower cells of the palisade parenchyma. Jasmonic acid content dropped dramatically in Cd-stressed roots, meanwhile ABA and metabolites increased at different times of Cd stress suggesting their involvement in Cd response. ABA peaked at 24 h of Cd stress whereas a strong peak of ABA-GE appeared immediately after the ABA peak. DPA started increasing at 6 h of Cd treatment and the highest peak was recorded at 24 h, as well as the ABA peak. The DPA and ABA-GE contents were higher than the ABA ones Therefore, the alterations induced by the Cd-phytotoxic effect on the growth and anatomy of the soybean seedlings as well as on the ABA and JA root content suggest a possible involvement of these hormones on the sensing and response mediation of these compounds in the organ that first senses the stress.  相似文献   

19.
为评价星花玉兰及其实生选育品种‘菊花’以及其与柳叶玉兰的杂交品种‘皮鲁埃特’的耐涝性强弱,并为后续星花玉兰耐涝品种选育提供理论依据。通过14 d的水涝胁迫,研究3种玉兰叶片生理、内源激素和光合特性等相关的14个指标变化。利用主成分分析法,比较超氧化物歧化酶(SOD)、丙二醛(MDA)、可溶性蛋白、脱落酸(ABA)和1-氨基环丙烷-1-羧酸(ACC)这5个作为评价耐涝性指标的重要性以及评价耐涝性,同时利用隶属函数分析法对5个指标进行耐涝性评价。结果表明:(1)3种玉兰在水涝胁迫后叶片的净光合速率(P n)、气孔导度(G_(s))、蒸腾速率(T_(r))、叶绿素含量、初始荧光(F_(o))、最大荧光(F_(m))、PSⅡ最大光化学量子产量(F_(v)/F_(m))、PSⅡ有效光化学量子产量(Yield)和可溶性蛋白含量均显著降低,MDA、ABA含量和SOD活性均有不同的增加幅度。‘菊花’和星花玉兰处理组的C_(i)、ACC显著增加,而‘皮鲁埃特’的显著降低。(2)评价3种玉兰耐涝性的生理及内源激素指标重要性依次为ACC、SOD、ABA、可溶性蛋白和MDA。(3)通过主成分分析法和隶属函数分析法对3种玉兰进行综合评价,耐涝性强弱依次为‘皮鲁埃特’、星花玉兰和‘菊花’。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号