首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated a change in tissue fluid osmolality and developmental sequences of mitochondria-rich (MR) cells during embryonic and larval stages of Mozambique tilapia, Oreochromis mossambicus, developing in freshwater. Tissue osmolality, representing body fluid osmolality, ranged from 300 to 370 mOsm/kg during embryonic and larval stages. This suggests that tilapia embryos and larvae are also able to regulate body fluid osmolality to some extent, although the levels are somewhat higher and fluctuate more greatly in embryos and larvae than in adults. Na+/K+-ATPase-immunoreactive MR cells were first detected in the yolk-sac membrane 3 days before hatching (day − 3), followed by their appearance in the body skin on day − 2. Subsequently, MR cells in both the yolk-sac membrane and body skin increased in number, and most densely observed on days − 1 and 0. Whereas yolk-sac and skin MR cells decreased after hatching, MR cells in turn started developing in the gills after hatching. Thus, the principal site for MR cell distribution shifted from the yolk-sac membrane and body skin during embryonic stages to the gills during larval stages, and tilapia could maintain continuously their ion balance through those MR cells during early life stages.  相似文献   

2.
The fish gill is a multifunctional organ responsible for gas exchange and ionic regulation. It is hypothesized that both morphological and functional differentiation can be found in the gills of the aquatic air-breathing fish, Trichogaster leeri. To test this, we used the air-breathing fish, Trichogaster leeri, to investigate various morphological/functional parameters. First, we evaluated the importance of performing the aquatic surface respiration behavior in T. leeri. A reduced survival rate was observed when fish were kept in the restrained cages in hypoxic conditions. On the gross anatomy of gills, we found evidence of both morphological and functional modification in the first and the second gills and are responsible for ionic regulation. There were large-bore arterioarterial shunts in the fourth gill arch. It is specialized for the transport of oxygenated blood and is less responsive to environmental stress. In addition, the anterior and the posterior gills differed in the Na+, K+-ATPase activity upon ionic stresses. That is, only the Na+, K+-ATPase activity of the anterior two gills was up-regulated significantly in the deionized water. Lastly, we found that the number of mitochondria-rich cells in the first and the second gills increased following ionic stress and no difference was found in the third and the fourth gills following such an exposure. These results supported the hypothesis that there are morphological and functional differences between anterior and posterior gill arches within the air-breathing Trichogaster leeri. In contrast, no significant difference was found among gills in gross anatomy, filament density and Na+, K+-ATPase activity in the non-air-breather, Barbodes schwanenfeldi.  相似文献   

3.
The impact of hypophysectomy on the state of the interrenal gland and ultrastructure of chloride cells of gills is investigated in 18-month old juveniles of starred sturgeon Acipenser stellatus in the process of its adaptation to artificial sea water (14.6‰). Hypophysectomized juveniles, similarly to intact juveniles, are able to support a relative stability of osmolarity of blood serum in the course of adaptation to sea water by transition from hyperosmotic to hypoosmotic type of osmoregulation. Changes in the investigated parameters of cells of the interrenal gland (volume of nuclei, areas of cells and of lipophilic vacuoles) occurring in the hypophysectomized and in intact specimens in the process of adaptation to sea water are generally similar, but have different dynamics. In contrast to many teleostean species, in acipenserids the hypophyectomy does not cause atrophy of the interrenal gland. The latter is incorporated in the process of regulation in the course of adaptation of fish to sea water. Hypophyecotmy results in partial destruction of organoids in some chloride cells of gills. However, when the fish are transferred to sea water, the structural changes occur in chloride cells characteristic of their transition to the excretory state. This may happen only at activation of the transport enzyme Na+/K+-ATPase of these cells by cortisol produced by the interrenal gland. In the absence of hypophysis, the functional connection of organs of the axis hypothalamus (ACTH-immunopositive cells of tuberal nucleus) → the interrenal gland → chloride cells is realized in the fish.  相似文献   

4.
To examine osmotic regulation during long-term acclimation to a hyperosmotic medium, hemolymph osmolality, [Na+] and total protein, tissue hydration, and free amino acid (FAA) pools in abdominal muscle, gills, central nervous tissue and hemolymph were quantified in the diadromous freshwater (FW) shrimp, Macrobrachium olfersii, during direct exposure to 21‰S seawater over a 20-day period. Hemolymph osmolality and [Na+] reach stable maxima within 24?h while total protein is unchanged. Muscle and nerve tissues rapidly lose water while gills hydrate; all tissues attain maximum hydration (+5%) by 5 days, declining to FW values except for gills. Total FAA are highest in muscle, reach a maximum by 2 days (+64%), declining to FW values. Gill FAA increase by 110% after 24?h, diminishing to FW values. Nerve FAA increase 187% within 24?h, and remain elevated. Hemolymph FAA decrease (?75%) after 24?h, stabilizing well below the FW concentration. During acclimation, muscle glycine (+247%), gill taurine (+253%) and proline (+150%), and nerve proline (+426%), glycine (+415%) and alanine (+139%) increase, while hemolymph leucine (?70%) decreases. Total FAA pools contribute 10–20% to intracellular (22–70?mmol/kg) and 0.5–2.4% to hemolymph (3–7?mOsm/kg) osmolalities during direct acclimation from FW. These data emphasize the modest participation of FAA pools in intracellular osmotic regulation during physiological adaptation by M. olfersii to osmotic challenge, accentuating the role of anisosmotic extracellular regulation, suggesting that, during the invasion of freshwater by the Crustacea, dependence on intracellular adjustment employing FAA as osmotic effectors, has become progressively reduced.  相似文献   

5.
Euryhaline tilapia (Oreochromis mossambicus) survived in brackish water (BW; 20‰) but died in seawater (SW; 35‰) within 6 h when transferred directly from fresh water (FW). The purpose of this study was to clarify responses in gills of FW tilapia to various hyperosmotic shocks induced by BW or SW. In FW-acclimated tilapia, scanning electron micrographs of gills revealed three subtypes of MR cell apical surfaces: wavy-convex (subtype I), shallow-basin (subtype II), and deep-hole (subtype III). Density of apical surfaces of mitochondrion-rich (MR) cell in gills of the BW-transfer tilapia decreased significantly within 3 h post-transfer due to disappearance of subtype I cells, but increased from 48 h post-transfer because of increasing density of subtype III cells. SW-transfer individuals, however, showed decreased density of MR cell openings after 1 h post-transfer because subtype I MR cell disappeared. On the other hand, relative branchial Na+/K+-ATPase (NKA) α1-subunit mRNA levels, protein abundance, and NKA activity of the BW-transfer group increased significantly at 6, 12, and 12 h post-transfer, respectively. In the SW-transfer group, relative mRNA and protein abundance of gill NKA α1-subunit did not change while NKA activity declined before dying in 5 h. Upon SW transfer, dramatic increases (nearly 2-fold) of plasma osmolality, [Na+], and [Cl] were found prior to death. For the BW-transfer group, plasma osmolality was eventually controlled by 96 h post-transfer by enhancement of NKA expression and subtype III MR cell. The success or failure of NKA activation from gene to functional protein as well as the development of specific SW subtype in gills were crucial for the survival of euryhaline tilapia to various hyperosmotic shocks.  相似文献   

6.
Euryhaline crustaceans rarely hyporegulates and employ the driving force of the Na,K-ATPase, located at the basal surface of the gill epithelium, to maintain their hemolymph osmolality within a range compatible with cell function during hyper-regulation. Since polyamine levels increase during the adaptation of crustaceans to hyperosmotic media, we investigate the effect of exogenous polyamines on Na,K-ATPase activity in the posterior gills of Callinectes danae, a euryhaline swimming crab. Polyamine inhibition was dependent on cation concentration, charge and size in the following order: spermine > spermidine > putrescine. Spermidine affected K0.5 values for Na+ with minor alterations in K0.5 values for K+ and NH4+, causing a decrease in maximal velocities under saturating Na+, K+ and NH4+ concentrations. Phosphorylation measurements in the presence of 20 µM ATP revealed that the Na,K-ATPase possesses a high affinity site for this substrate. In the presence of 10 mM Na+, both spermidine and spermine inhibited formation of the phosphoenzyme; however, in the presence of 100 mM Na+, the addition of these polyamines allowed accumulation of the phosphoenzyme. The polyamines inhibited pumping activity, both by competing with Na+ at the Na+-binding site, and by inhibiting enzyme dephosphorylation. These findings suggest that polyamine-induced inhibition of Na,K-ATPase activity may be physiologically relevant during migration to fully marine environments.  相似文献   

7.
Summary Glucose transport was studied in marine mussels of the genusMytilus. Initial observations, with intact animals and isolated gills, indicated that net uptake of glucose occurred in mussels by a carrier-mediated, Na+-sensitive process. Subsequent studies included use of brush-border membrane vesicles (BBMV) in order to characterize this transport in greater detail. The highest activity of Na+-dependent glucose transport was found in the brush-border membrane fractions used in this study, while basal-lateral membrane fractions contained the highest specific binding of ouabain. Glucose uptake into BBMV showed specificity for Na+, and concentrative glucose transport was observed in the presence of an inwardly directed Na+ gradient. There was a single saturable pathway for glucose uptake, with an apparentK t of 3 m in BBMV and 9 m in intact gills. The kinetics of Na+ activation of glucose uptake were sigmoidal, with apparent Hill coefficients of 1.5 in BBMV and 1.2 in isolated gills, indicating that more than one Na+ may be involved in the transport of each glucose. Harmaline inhibited glucose transport in mussel BBMV with aK i of 44 m. The uptake of glucose was electrogenic and stimulated by an inside-negative membrane potential. The substrate specificity in intact gills and BBMV resembled that of Na+-glucose cotransporters in other systems;d-glucose and -methyl glucopyranoside were the most effective inhibitors of Na+-glucose transport,d-galactose was intermediate in its inhibition, and there was little or no effect ofl-glucose,d-fructose, 2-deoxy-glucose, or 3-O-methyl glucose. Phlorizin was an effective inhibitor of Na+-glucose uptake, with an apparentK i of 154nm in BBMV and 21nm in intact gills. While the qualitative characteristics of glucose transport in the mussel gill were similar to those in other epithelia, the quantitative characteristics of this process reflect adaptation to the seawater environment of this animal.  相似文献   

8.
Synopsis Blood samples from cannulated young adult (2.5–15 kg) white sturgeon, acclimated to San Francisco Bay water (24 ppt) had plasma values of 248.8 ± 13.5 mOsm kg−1 H2O, [Na+] = 125 ± 8.0 mEq 1−1, [K+] = 2.6 ± 0.8 mEq 1−1 and [CL] = 122 ± 3.0 mEq 1−1. Freshwater acclimated sturgeon had an osmolality of 236 ± 7, [Na+] = 131.6 + 4.4, [K+] = 2.5 ± 0.7 and [CL] = 110.6 ± 3.6. Freshwater acclimated fish gradually exposed to sea water (increase of 5 ppt h−1) had higher plasma osmolalities than did the bay water acclimated fish. These young adult sturgeon are able to tolerate transfer from fresh water to sea water as well as gradual transfer from sea water to fresh water. Plasma electrolytes in transferred fish are regulated, but tend to differ from long term acclimated fish at the same salinities. There is a gradual increase in the upper salinity tolerance (abrupt transfer) of juvenile white sturgeon with weight: 5–10 ppt for 0.4–0.9 g fish, 10–15 ppt for 0.7–1.8 g fish, and 15 ppt for 4.9–50.0 g fish. The ability of juveniles to regulate plasma osmolality is limited. The young adult fish are able to tolerate higher salinities (35 ppt) than juvenile sturgeon but probably are also characterized by low activity of the necessary ion exchange mechanisms in the gills which permit rapid adjustment of blood electrolytes with graduate change in external salinity.  相似文献   

9.
Summary The sulfatide content, phospholipid concentration, and (Na++K+)-ATPase activity from skin and gills of different stages of larval development ofCalyptocephalella caudiverbera (a Chilean frog) were analyzed. Additionally, the short-circuit current in skin was studied. When skin and gills, depending on the stage of larval development, present (Na++K+)-ATPase activity, they have a high ratio of sulfatide to amount of membrane and the phosphatidylserine concentration remains unchanged. Sulfatide content and (Na++K+)-ATPase activity in skin are in direct relationship with the level of sodium flux present during development. The specific enzymatic hydrolysis of sulfatide with partially purified arylsulfatase of pig kidney inhibits 100% of the ouabain-sensitive (Na++K+)-ATPase. The ouabain-insensitive ATPase remains virtually unchanged with the treatment, even with a high concentration of arylsulfatase or with ouabain present in the medium. These experiments strongly suggest a role of sulfatides in the (Na++K+)-ATPase activity and, as a consequence, in sodium ion transport.  相似文献   

10.
Summary The effects of temperature and pressure on Na+/K+-adenosine triphosphatases (Na+/K+-ATPases) from gills of marine teleost fishes were examined over a range of temperatures (10–25°C) and pressures (1–680 atm). The relationship between gill membrane fluidity and Na+/K+-ATPase activity was studied using the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH). The increase in temperature required to offset the membrane ordering effects of high pressure was 0.015–0.025°C·atm-1, the same coefficient that applied to Na+/K+-ATPase activities. Thus, temperature-pressure combinations yielding the same Na+/K+-ATPase activity also gave similar estimates of membrane fluidity. Substituion of endogenous lipids with lipids of different composition altered the pressure responses of Na+/K+-ATPase. Na+/K+-adenosine triphosphatase became more sensitive to pressure in the presence of chicken egg phosphatidylcholine, but phospholipids isolated from fish gills reduced the inhibition by pressure of Na+/K+-ATPase. Cholesterol increased enzyme pressure sensitivity. Membrane fluidity and pressure sensitivity of Na+/K+-ATPase were correlated, but the effects of pressure also dependent on the source of the enzyme. Our results suggest that pressure adaptation of Na+/K+-ATPase is the result of both changes in the primary structure of the protein and homeoviscous adaptation of the lipid environment.Abbreviations EDTA; DPH 1,6-diphenyl-1,3,5-hexatriene - PC phosphatidylcholine - PL phospholipid - SDH succinate dehydrogenase  相似文献   

11.
The effect of ambient osmolality on the height of lateral ciliated cells from the gills of two freshwater bivalve species (Dreissena polymorpha, Toxolasma texasensis) was directly observed microscopically. The addition of 1 mmol · l−1 KCl to an artificial pondwater (APW) superfusion medium resulted in an increase in cell height. When the superfusion solution was made hyperosmotic (∼90 mmol · kg−1 H2O) by the addition of 45 mmol · l−1 NaCl to APW, the cell height decreased by about 20–30% and there was no evidence of a regulatory volume increase over 20–30 min. In contrast, when 1 mmol · l−1 KCl was added to the hyperosmotic medium the cell height always partially (40–50%) recovered. When the gill tissue was returned to APW following the hyperosmotic treatment the cells returned to the original cell height. Bivalve gills superfused with the hyperosmotic NaCl and KCl solution in the presence of 1 mmol · l−1 ouabain experienced a similar 25% decrease in cell height. When the ouabain-treated tissues were returned to APW the cells swelled, overshooting the original cell height. These results indicate these freshwater bivalves have a limited ability for cellular volume regulation using inorganic ions, but depend on a suitable balance of Na+ and K+ in the environment to effect regulatory volume changes. Accepted: 17 October 1997  相似文献   

12.
We have explored the possible mechanisms by which mineralocorticoid (MR) and glucocorticoid (GR) receptors regulate the response to freshwater transfer in the gills of the euryhaline killifish Fundulus heteroclitus. Killifish were implanted with RU486 (GR antagonist) or spironolactone (MR antagonist) at doses of 0.1–1.0 mg g−1, and subsequently transferred from 10‰ brackish water to freshwater. Compared to brackish water sham fish, mRNA expression of CFTR and NKCC1 decreased in the gills of sham fish transferred to freshwater, whereas Na+,K+–ATPase α1a mRNA expression and α protein abundance, as well as cell proliferation (detected using BrdU) increased. Spironolactone inhibited the normal increase in cell proliferation and Na+,K+-ATPase expression after freshwater transfer. RU486 increased plasma cortisol levels and may have slightly inhibited Na+,K+–ATPase activity, but did not change α 1a expression. RU486 had no effect on cell proliferation in the non-lamellar region of the gills, but increased proliferation in the lamellar region. Neither antagonist inhibited the suppression of CFTR or NKCC1 expression after freshwater transfer. Glucocorticoid receptor expression was reduced in all sham and antagonist treatments compared to untreated controls, but no other consistent differences were observed. The effects of spironolactone suggest that MR is important for regulating ion transport in killifish gills after freshwater transfer.  相似文献   

13.
The objectives of the present study were to determine the relationships among length and weight of males, sperm volume, spermatozoa concentration, total number of spermatozoa, ionic contents and osmolality of seminal plasma in Barbus barbus. The effect of osmolality on sperm motility parameters after activation in NaCl, KCl, or sucrose solutions was also examined. There were significant correlations between spermatozoa concentration – length (R = + 0.7) and – weight (R = + 0.8) of males. No significant correlations were observed between the total number of spermatozoa, sperm volume, and length and weight of males. Seminal plasma osmolality was higher when the total number of spermatozoa (R = + 0.6) and sperm volume (R = + 0.6) were higher. Sperm motility and velocity was positively correlated with osmolality (R = + 0.5). The correlation between sperm motility and K+ was negative (R = 0.5), but positively correlated with Ca2+ (R = 0.8), Na+ (R = 0.8), and Cl (R = 0.8). There was a rapid decrease (P < 0.05) in sperm motility parameters after sperm activation. Just after sperm activation, beating waves propagated along the full length of flagella. At latter stages post sperm activation, the waves appeared only in proximal part of the flagellum. The highest spermatozoa velocity and percentage of motility were observed at 215–235 mOsmol kg− 1 in NaCl, KCl or sucrose. The tip of the flagellum became curled into a loop shape which shortened the flagellum after activation of sperm in distilled water. B. barbus sperm is very similar to that of other cyprinids in terms of ionic contents and osmolality of the seminal plasma, mechanism of sperm activation and behavior and motility of sperm during swimming period.  相似文献   

14.
We examined changes in the expression of Na+/K+-ATPase mRNA in the gills of the cinnamon clownfish using quantitative real-time PCR in an osmotically changing environment [seawater (35 psu; practical salinity unit, 1 psu ≈ 1‰) → brackish water (17.5 psu) and brackish water with prolactin]. The expression of Na+/K+-ATPase mRNA in gills was increased after the transfer to brackish water, and the expression was repressed by prolactin treatment. Also, activities of gill Na+/K+-ATPase and plasma cortisol levels increased after the transfer to brackish water and were repressed in brackish water with prolactin treatment. Na+/K+-ATPase-immunoreactive cells were almost consistently observed in the gill filaments, but absent from the lamella epithelia. The plasma osmolality level decreased in brackish water, but the level of this parameter increased in brackish water with prolactin treatment during salinity change. These results suggest that the Na+/K+-ATPase gene plays an important role in osmoregulation in gills, and prolactin improves the hyperosmoregulatory ability of cinnamon clownfish in a brackish water (hypoosmotic) environment.  相似文献   

15.
SODIUM-potassium-activated, magnesium-dependent, adenosine triphosphatase (Na+, K+, Mg2+-ATPase) is widely accepted as an essential factor in sodium transport1 and observations on fish substantiate this view. There are concurrent increases, for example, of both Na+, K+, Mg2+-ATPase activity and osmoregulatory sodium transport2, in the intestinal mucosae3,4 and the gills3,5 of euryhaline teleosts during adaptation to seawater. Furthermore, the gills of stenohaline seawater teleosts, which actively secrete sodium, exhibit higher Na+, K+, Mg2+-ATPase activity than the gills of stenohaline freshwater teleosts, which do not actively secrete sodium3,5. Na+, K+, Mg2+-ATPase therefore seems to be important in maintaining tissue osmolarity well below that of seawater. It is disquieting to report therefore that Na+, K+, Mg2+-ATPase activity in the intestinal mucosae and gills of marine teleosts is inhibited by the organochlorine insecticide DDT. This observation may help to clarify the unexplained sensitivity of teleosts to DDT6.  相似文献   

16.
This study aims to describe seminal plasma characteristics, detect changes during and between two consecutive spawning seasons (SS), and compare plasma features between two important South American fish species. Prochilodus lineatus and Brycon orbignyanus sperm was collected over two (SS1; SS2). Each season was divided into first and second sampling periods (P1; P2). Thus, the four experimental periods were referred to as SS1P1, SS1P2, SS2P1, and SS2P2. Seminal plasma was analyzed for osmolality, pH, and Na+, K+, and Ca2+ concentration. Additionally, sperm concentration, motility rate, and velocities (curvilinear = VCL; straight line = VSL) were determined and correlated with plasma features. In P. lineatus, plasma osmolality was lower in SS1P2, pH was higher in SS2P2, Na+ was higher and K+ and Ca2+ were lower in SS2P1 compared with other experimental periods. Positive correlations were observed between motility and plasma osmolality, motility and Na+, and VCL and Na+. In B. orbignyanus, plasma osmolality was higher in SS2P1 and SS2P2 and K+ concentration was higher in SS1P1 compared with other experimental periods; no correlation was observed. Seminal plasma parameters change during SS; therefore, the composition of a sperm extender and artificial fertilization methods should be adapted to maximize fertilization rates.  相似文献   

17.
Summary The levels of Na+, K+ ATPase were measured in gills fromPlatichthys flesus adapted to seawater and freshwater using a variety of experimental techniques. Na+, K+ ATPase was assayed directly in crude gill homogenates,3H-ouabain binding was determined in isolated, perfused gills and ouabainsensitive oxygen consumption measured in sliced gill filaments. These experimental approaches all failed to show any difference in Na+, K+ ATPase activity or in enzyme turnover rate in gills from seawateradapted and freshwater-adaptedPlatichthys. The results are discussed in terms of the marine origin of the flounder and the energetic demands of ion regulation in euryhaline fish.  相似文献   

18.
The Neotropical armoured catfish Corydoras paleatus is a facultative air-breathing teleost commonly exported as ornamental fish. In this species, air breathing enables it to survive and inhabit freshwater environments with low oxygen levels. Therefore, it is important to analyse the gills from a morphological aspect and its dimensions in relation to body mass with reference to aquatic respiration. For that, the gills were analysed using a stereoscopic microscope for morphometric studies, and structural and ultrastructural studies were carried out to compare the four branchial arches. Furthermore, two immunohistochemical techniques were used to locate and identify the presence of a Na+/K+ pump. The characterization of the potential for cell proliferation of this organ was assessed using an anti-PCNA antibody. The results show that gills of C. paleatus present some characteristics related to its diet and lifestyle, such as the limited development of gill rakers and the abundance of taste buds. In addition, other special features associated with the environment and bimodal breathing were observed: scarce and absent mucous cells (MCs) in the gill filaments and branchial lamellae, respectively, and the localization of mitochondria-rich cells (MRCs) covering the basal third of the branchial lamellae, which reduces the gill respiratory area. A peculiar finding in the gill epithelium of this armoured catfish was the presence of mononuclear cells with sarcomeres similar to myoid cells, whose functional importance should be determined in future studies. Finally, in C. paleatus, the interlamellar space of gill filaments is an important site for cell turnover and ionoregulation; the latter function is also performed by the branchial lamellae.  相似文献   

19.
The marine bacteriumVibrio anguillarum causes disease in fish worldwide and is particularly devastating in aquaculture. Little is known about the ecology ofV. anguillarum in the environment and how this may relate to the pathogenicity of this organism. Combining membrane filtration and a species-specific DNA probe, culturableV. anguillarum cells were detected in water from three habitats and in chinook salmon (Onchorynchus tshawytscha) tissue samples. Results show that different marine habitats have a marked effect on cell numbers and that water temperature may play a role in the culturability and distribution ofV. anguillarum. Vibrio anguillarum was detected from the gills of salmon within 24 h of transfer of fingerlings from freshwater to seawater, with cell numbers reaching a concentration of 1.9 × 102 cells g–1 tissue 28 days post transfer.Vibrio anguillarum cell numbers were low in the colon throughout the study, andV. anguillarum was not detected in healthy kidney samples. The methodology reported in this paper allows the accurate quantification of culturableV. anguillarum cells and has allowed a preliminary study of the ecology of this species.  相似文献   

20.
To investigate the possible link between cell wall alginic acid composition and tissue mechanics, juveniles of Egregia menziesii (Turn.) Aresch. were grown under controlled conditions in an outdoor flowing seawater system under three different force regimes. After 6–10 weeks of growth, tissue strength, breaking strain, modulus, toughness, work of fracture, and the percentage of polymannuronate, polyguluronate, and alternating sequences in the cell wall alginic acid were examined. The force regime had significant effects on all mechanical indices except toughness. Juveniles grown under high energy conditions (water velocity = 1.2 m · s?1) were about two times stronger, two times stiffer, and had a 1.5 times greater work of fracture than those from low energy conditions (<1 cm ·?1). Treatment effects on thallus strength and modulus were predicted from alginic acid composition data to test for the importance of this cell wall material in whole plant adaptation to hydrodynamic stress. However, the prediction that differences in alginic acid composition were responsible for differences in tissue mechanical properties was inconsistent with observations. Therefore, the hypothesis that alginates play a central role in structural adaptation could not be accepted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号