首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some 6-substituted-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole derivatives (4a-f and 5a-d) have been synthesized by cyclisation of 4-amino-5-[1-(6-methoxy-2-naphthyl)ethyl]-3-mercapto-(4H)-1,2,4-triazole (3) with various substituted aromatic acids and aryl/alkyl isothiocyanates, through a single step reaction. The target compounds were pharmacologically evaluated for their anti-inflammatory and analgesic potentials by known experimental models. Several of these showed significant activity. Very low ulcerogenic index was observed for potent compounds.  相似文献   

2.
Two series of 5-ethyl-2-amino-3-pyrazolyl-4-methylthiophenecarboxylate and 2-thioxo-N(3)-aminothieno[2,3-d]pyrimidines were prepared from 3,5-diethyl-2-amino-4-methylthio-phenecaboxylate and evaluated as anti-inflammatory, analgesic and ulcerogenic activities. Among the compounds studied, compounds which containing the substituted hydrazide at C-3 position 7, 16, and 17a showed more potent anti-inflammatory and analgesic activities than the standard drug (Indomethacin and Aspirin), along without ulcerogenity. While compounds 2, 5, 9, 10, and 11c showed moderate activities. Some of the newly synthesized compounds have good to excellent antimicrobial activity.  相似文献   

3.
5-Halo-6-phenyl pyrimidinones, represented by 2-amino-5-bromo-6-phenyl-4(3H)-pyrimidinone (ABPP) and 2-amino-5-iodo-6-phenyl-4(3H)-pyrimidinone (AIPP), and 8-substituted guanosines, represented by 8-bromoguanosine (8-BrGuo) and 8-mercaptoguanosine (8-MGuo), are well-documented biological response modifiers. We have found that these substituted pyrimidinones and guanosines are very similar in their abilities to activate B cells. ABPP, AIPP, 8-BrGuo, and 8-MGuo induced murine B cells to polyclonally proliferate and differentiate in vitro. The maximal B-cell response levels and the kinetics of the responses elicited with both classes of compounds were comparable; however, ABPP and AIPP were approximately 10-fold more potent than 8-BrGuo and 8-MGuo. An additional similarity observed between the two classes was that polyclonal activation of B cells by ABPP, AIPP, 8-BrGuo, and 8-MGuo was limited to large B cells which had probably been activated previously in vivo. This is in contrast to lipopolysaccharide which is capable of inducing both large, activated B cells and small, resting B cells to proliferate and differentiate. Although substituted pyrimidinones and guanosines were not able to induce new DNA synthesis or antibody production in small B cells, both classes of compounds increased the expression of Ia antigens on the surface of both small and large B cells. These data, together with the recent observations that 8-BrGuo, like ABPP and AIPP, can stimulate NK and cytotoxic macrophage activity via the induction of interferon, strongly suggest that 5-halo-6-phenyl pyrimidinones and 8-substituted guanosines belong to the same structural class of biological response modifiers. Thus, the residues held in common by these two classes of stimulators may interact with the same cellular constituent in the target cells.  相似文献   

4.
The range of substituted naphthalenesulfonates which are metabolized by Pseudomonas sp. BN6 were investigated. Resting cells from strain BN6 oxidized 1- and 2-naphthalenesulfonate, 1-hydroxynaphthalene-2-sulfonate, 2,6-naphthalenedisulfonate and all monosulfonated naphthalene-2-sulfonates which carry one or two substitutents in the positions 4-, 5-, 6-, 7- or 8- of the naphthalene ring-system. With the exception of (substituted) 4- or 5-amino- and 4-hydroxynaphthalene-2-sulfonates these compounds were converted to the corresponding salicylates. Strain BN6 did not oxidize substituted naphthalene-1-sulfonates, 3-substituted naphthalenesulfonates and substituted naphthalenedisulfonates. Turnover of 4-amino- or 4-hydroxynaphthalene-2-sulfonates resulted in the accumulation of the corresponding naphthoquinones in the culture medium. Thus, degradation of 4-amino- and 4-hydroxynaphthalenesulfonates was restricted by the rapid autoxidation of the substituted 1,2-dihydroxynaphthalenes formed as metabolites. Catabolic activities of strain BN6 for naphthalenesulfonates were induced by salicylate, 3- or 6-hydroxysalicylate, and 3-, 4- or 5-aminosalicylate but not by 4- and 5-hydroxysalicylate. All naphthalenesulfonates that were not converted into the corresponding salicylates, were found to be inefficient as effectors. It was therefore concluded that (substituted) salicylates are the inducers of the relevant enzymes. The degradation of 2-naphthalene-sulfonate by a pure culture of strain BN6 was prevented by the toxicity of the dead-end product salicylate. Substituted salicylates were less toxic and allowed growth of strain BN6 in axenic culture with various substituted naphthalenesulfonates.Abbreviations AB aminobenzoate - ANS aminonaphthalenesulfonate - DHN dihydroxynaphthalene - DHNC dihydroxynaphthalene-carboxylate - DHNDO 1,2-dihydroxynaphthalene dioxygenase - HBPA 2-hydroxybenzalpyruvate aldolase - HNS hydroxynaphthalenesulfonate - HS hydroxysalicylate - Ind-C indolecarboxylate - Ind-S indolesulfonate - MANS N-methylaminonaphthalenesulfonate - NC naphthalenecarboxylate - NDS naphthalenedisulfonate - NQ naphthoquinone - NS naphthalenesulfonate - NSDO naphthalenesulfonate dioxygenase - Rt retention time - SADH salicylaldehyde dehydrogenase - THN trihydroxynaphthalene (hydroxy-1,2-dihydroxynaphthalene)  相似文献   

5.
Biotransformation of the highly substituted pyridine derivative 2-amino-4-methyl-3-nitropyridine by Cunninghamella elegans ATCC 26269 yielded three products each with a molecular weight of 169?Da which were identified as 2-amino-5-hydroxy-4-methyl-3-nitropyridine, 2-amino-4-hydroxymethyl-3-nitropyridine, and 2-amino-4-methyl-3-nitropyridine-1-oxide. Biotransformation by Streptomyces antibioticus ATCC 14890 gave two different products each with a molecular weight of 169?Da; one was acid labile and converted to the other stable product under acidic conditions. The structure of the stable product was established as 2-amino-4-methyl-3-nitro-6(1H)-pyridinone, and that of the less stable product was assigned as its tautomer 2-amino-6-hydroxy-4-methyl-3-nitropyridine. Four of the five biotransformation products are new compounds. Several strains of Aspergillus also converted the same substrate to the lactam 2-amino-4-methyl-3-nitro-6(1H)-pyridinone. Microbial hydroxylation by C. elegans was found to be inhibited by sulfate ion. In order to improve the yield and productivity of the 5-hydroxylation reaction by C. elegans, critical process parameters were determined and Design of Experiments (DOE) analyses were performed. Biotransformation by C. elegans was scaled up to 15-l fermentors providing 2-amino-5-hydroxy-4-methyl-3-nitropyridine at ca. 13?% yield in multi-gram levels. A simple isolation process not requiring chromatography was developed to provide purified 2-amino-5-hydroxy-4-methyl-3-nitropyridine of excellent quality.  相似文献   

6.
The predominant bacterial pathway for nitrobenzene (NB) degradation uses an NB nitroreductase and hydroxylaminobenzene (HAB) mutase to form the ring-fission substrate ortho-aminophenol. We tested the hypothesis that constructed strains might accumulate the aminophenols from nitroacetophenones and other nitroaromatic compounds. We constructed a recombinant plasmid carrying NB nitroreductase (nbzA) and HAB mutase A (habA) genes, both from Pseudomonas pseudoalcaligenes JS45, and expressed the enzymes in Escherichia coli JS995. IPTG (isopropyl-beta-D-thiogalactopyranoside)-induced cells of strain JS995 rapidly and stoichiometrically converted NB to 2-aminophenol, 2-nitroacetophenone (2NAP) to 2-amino-3-hydroxyacetophenone (2AHAP), and 3-nitroacetophenone (3NAP) to 3-amino-2-hydroxyacetophenone (3AHAP). We constructed another recombinant plasmid containing the nitroreductase gene (nfs1) from Enterobacter cloacae and habA from strain JS45 and expressed the enzymes in E. coli JS996. Strain JS996 converted NB to 2-aminophenol, 2-nitrotoluene to 2-amino-3-methylphenol, 3-nitrotoluene to 2-amino-4-methylphenol, 4-nitrobiphenyl ether to 4-amino-5-phenoxyphenol, and 1-nitronaphthalene to 2-amino-1-naphthol. In larger-scale biotransformations catalyzed by strain JS995, 75% of the 2NAP transformed was converted to 2AHAP, whereas 3AHAP was produced stoichiometrically from 3NAP. The final yields of the aminophenols after extraction and recovery were >64%. The biocatalytic synthesis of ortho-aminophenols from nitroacetophenones suggests that strain JS995 may be useful in the biocatalytic production of a variety of substituted ortho-aminophenols from the corresponding nitroaromatic compounds.  相似文献   

7.
Glucosidation of the new 8-amino-6-benzyl(or substituted benzyl)-2,8-dihydro-1,2,4-triazolo[4,3-b][1,2,4]triazin-7(3H)-ones (3a-d) with 2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranosyl bromide 4 gave the corresponding N-glucosides 5a-d. Chemical transformations leading to new functionalities have also been achieved to give compounds 7-12. Antimicrobial activity of compounds 5a-c against Aspergillus fumigatus, Penicillium italicum, Syncephalastrum racemosum, Candida albicans, Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis, Escherichia coli is described.  相似文献   

8.
A series of 4-amino-5-vinyl-3(2H)-pyridazinones and analogues were synthesized and their antinociceptive effect was evaluated in the mouse abdominal constriction model. Several of the novel compounds showed ED(50) values in the range 6-20mg/kg/sc and demonstrated to be able to completely protect all the treated animals from the effect of the noxious stimulus at 30 mg/kg/sc. SAR studies confirmed the essential role played by an amino or substituted amino function at position 4 and by a vinyl group at position 5 of the diazine system.  相似文献   

9.
The X-ray crystal structures of 5-amino-1,3,4-thiadiazole-2-sulfonamide (the acetazolamide precursor) and 5-(4-amino-3-chloro-5-fluorophenylsulfonamido)-1,3,4-thiadiazole-2-sulfonamide in complex with the human isozyme II of carbonic anhydrase (CA, EC 4.2.1.1) are reported. The thiadiazole-sulfonamide moiety of the two compounds binds in the canonic manner to the zinc ion and interacts with Thr199, Glu106, and Thr200. The substituted phenyl tail of the second inhibitor was positioned in the hydrophobic part of the binding pocket, at van der Waals distance from Phe131, Val 135, Val141, Leu198, Pro202, and Leu204. These structures may help in the design of better inhibitors of these widespread zinc-containing enzymes.  相似文献   

10.
9-Alkyl and 9-heteroalkyl substituted derivatives of the 2-amino-6-guanidinopurine were synthesized by alkylation of 2-amino-6-chloropurine and subsequent guanidinolysis. The activity of the thus prepared compounds on murine macrophages was examined. Compounds 4a, 4b, and 4d inhibit the LPS+IFN-gamma-induced NO production in murine macrophages while compound 4h stimulates this production.  相似文献   

11.
From solid cultures of the biologically important endophyte Streptomyces species LR4612, cultivated on Maytenus hookeri, four new and two known compounds were isolated. The new compounds were identified as (2S*,3S*)-5-amino-3-hydroxy-5-oxopentan-2-yl 3-(formylamino)-2-hydroxybenzoate (1), N-[(3R*,4R*)-3-amino-3,4-dihydro-4-methyl-2,6-dioxo-2H,6H-1,5-benzodioxocin-10-yl]formamide (2), (5beta,6alpha)-6,11-dihydroxyeudesmane (3), and 5-(6,7-dihydroxy-6-methyloctyl)furan-2(5H)-one (4); the known compounds were elucidated as sorbicillin (5) and N-acetyltyramine (6). The structures were established by HR-ESI-MS and in-depth NMR analyses.  相似文献   

12.
A series of peptidomimetic human immunodeficiency virus (HIV) protease inhibitors containing substituted allophenylnorstatine (Apns: (2S,3S)-3-amino-2-hydroxy-4-phenylbutyric acid) were designed and synthesized. From the structure-activity relationship of this series of compounds, SM-309515 was found to have potent antiviral activity against wild-type and resistant HIV-1s and to possess a desirable pharmacokinetic profile in dogs.  相似文献   

13.
Synthesis and anti-breast cancer activities of substituted quinolines   总被引:1,自引:0,他引:1  
Promising anti-breast cancer agents derived from substituted quinolines were discovered. The quinolines were readily synthesized in a large scale from a sequence of reactions starting from 4-acetamidoanisole. The Michael addition product was isolated as the reaction intermediate in the ring closing reaction of 4-amino-5-nitro-2-(3-trifluoromethylphenyloxy)anisole with methyl vinyl ketone leading to 6-methoxy-4-methyl-8-nitro-5-(3-trifluoromethylphenyloxy)quinoline (14). The amino function of 8-amino-6-methoxy-4-methyl-5-(3-trifluoromethylphenyloxy)quinoline, prepared from 14, was connected to various side chains via alkylation with N-(3-iodopropyl)phthalimide, Michael addition with acrylonitrile, and reductive amination with various heterocycle carboxaldehydes, such as imidazole-4-carboxaldehyde, thiophene-2-carboxaldehyde, and 2-furaldehyde. Effects of the substituted quinolines on cell viability of T47D breast cancer cells using trypan blue exclusion assay were examined. The results showed that the IC(50) value of 6-methoxy-8-[(2-furanylmethyl)amino]-4-methyl-5-(3-trifluoromethylphenyloxy)quinoline is 16+/-3nM, the lowest IC(50) out of all the quinolines tested. IC(50) values of three other quinolines are in the nanomolar range, a desirable range for pharmacological testing.  相似文献   

14.
R Bhat  A Marx  C Galanos    R S Conrad 《Journal of bacteriology》1990,172(12):6631-6636
Lipid A derived from Pseudomonas aeruginosa PAO1 contains a biphosphorylated 1-6-linked glucosamine disaccharide backbone. The reducing glucosamine has an unsubstituted glycosidically linked phosphate at C-1. The nonreducing glucosamine has an ester-bound phosphate at C-4' which is nonstoichiometrically substituted with 4-amino-4-deoxyarabinose. Induction of 4-amino-4-deoxyarabinose was dependent on cultural conditions. No pyrophosphate groups were detected. Acyloxyacyl diesters are formed by esterification of the amide-bound 3-hydroxydodecanoic acid with dodecanoic acid and 2-hydroxydodecanoic acids in an approximate molar ratio of 2:1. Dodecanoic and 3-hydroxydecanoic acids are esterified to positions C-3 and C-3' in the sugar backbone. All hydroxyl groups of the glucosamine disaccharide except C-4 and C-6' are substituted. Lipopolysaccharide chemical analyses measured glucose, rhamnose, heptose, galactosamine, alanine, phosphate, and glucosamine. The proposed lipid A structure differs from previous models. There are significant differences in acyloxyacyl diesters, and the proposed model includes an aminopentose substituent.  相似文献   

15.
The regioselective synthesis of 1-heteroaryl-5-amino-4-phenylpyrazoles 3a-g and 1-heteroaryl-5-amino-3-methyl-4-phenylpyrazoles 3h-n was achieved by the treatment of heteroarylhydrazines 1a-g with alpha-phenylformylacetonitrile 2a and alpha-phenylacetylacetonitrile 2b, respectively. The structures of the compounds 3 were established by the combined use of 1H and 13C NMR spectroscopy. All the fourteen compounds were tested for their in vitro antibacterial activity against three Gram-positive and two Gram-negative bacteria. Six compounds 3a, 3d, 3e, 3g, 3l, and 3n from this series were found to be equipotent or more potent than the commercial antibiotics (Linezolid and Cefroxime axetil).  相似文献   

16.
4-Aminoantipyrine (4-amino-1,5-dimethyl-2-phenylpyrazole-3-one) and its analogues have been found to be compounds of interest for their anti-inflammatory, analgesic, antiviral, antipyretic, antirheumatic and antimicrobial activities. In the present study, Schiff base analogues of 4-aminoantipyrine were synthesized by the condensation reaction with substituted benzaldehydes and then evaluated for their antioxidant and anti-inflammatory activities. From among the synthesized compounds (3a-m, 4 and 5), 3 k and 3f exhibited the highest antioxidant activity followed by 3g, 3l, 3c, 3i, 5, 3m and 3h. The IC(50) values for compounds 3 k and 3f were found to be 0.44 and 0.93 μM, respectively, comparable to that of ascorbic acid (IC(50) 0.41 μM), a standard antioxidant agent. From the comparisons between the hydroxylated and methoxylated compounds, the rank order of antioxidant activity for the products resulting from benzylidene phenyl ring substitution was 2,4,6-OH>3,4-OH>3-OMe-4-OH>3,5-OMe-4-OH>2,4-OH>3-Me-4-OMe>3,4-OMe>4-OMe>4-OH. The structure-activity relationship study revealed that the position and nature of the substituted group on the benzylidene phenyl ring of the Schiff base analogues of 4-aminoantipyrine play an important role in their antioxidant activity. The anti-inflammatory activity of 3f, which also exhibited excellent antioxidant activity, was evaluated in terms of its inhibition of NO production, an inflammatory modulator, in LPS pretreated RAW 264.7 cells using the Griess method. We also examined whether or not this compound had effect on iNOS and COX-2 mRNA expression in RAW 264.7 cells. It was observed that compound 3f significantly reduced NO production and inhibited LPS-stimulated iNOS and COX-2 mRNA levels in a dose-dependent manner. Overall, 3f showed promising antioxidant and anti-inflammatory activities and may be used as the lead compound in a future study.  相似文献   

17.
The capacity of 27 heterocyclic sulfur compounds to induce base-pair substitutions was investigated with Klebsiella pneumoniae ur- pro- and Salmonella typhimurium TA100 as test organisms. Among the compounds tested, all sulfur compounds with nitro groups and some thiazoles with an amino group were mutagenic. Among the nitrothiazoles, the most potent mutagen was niridazole, followed by 2-acetamido-5-nitrothiazole, 2-bromo-5-nitrothiazole, N-(5-nitrothiazol-2-yl)benzamide, and 2-amino-5-nitrothiazole. Of the nitrothiophenes, 2-nitrothiophene was more mutagenic than 3-nitrothiophene and 2,4-dinitrothiophene. 4-Nitroisothiazole was also mutagenic. Of the aminothiazoles, 2-amino-5-bromothiazole and 2-amino-5-chlorothiazole were mutagenic to both test organisms. With 2-amino-5-(p-nitrophenylsulfonyl)thiazole, a mutagenic action was only found with Salmonella typhimurium TA100, whereas 2-aminothiazole and 2-amino-4-methylthiazole were only mutagenic with Klebsiella pneumoniae. With the other 13 compounds, no mutagenic activity was observed. Of the coccidiostatics, 2-acetamido-5-nitrothiazole was also mutagenic on Escherichia coli K12 and Saccharomyces cerevisiae D4 but non-mutagenic on Salmonella typhimurium TA1530, TA1535, TA1537 and TA98, while 2-amino-5-nitrothiazole was mutagenic on Escherichia coli K12, Salmonella typhimurium TA1530, TA1535 and TA98, and non-mutagenic on strain TA1537 and on Saccharomyces cerevisiae D4.  相似文献   

18.
A series of compounds derived from the 2-amino-4-(2-pyridyl) thiazole scaffold was synthesized and tested for in vitro antimycobacterial activity against the Mycobacterium tuberculosis H37Rv strain, antiplasmodial activity against the chloroquine sensitive NF54 Plasmodium falciparum strain and cytotoxicity on a mammalian cell line. Optimal antimycobacterial activity was found with compounds with a 2-pyridyl ring at position 4 of the thiazole scaffold, a substituted phenyl ring at the 2-amino position, and an amide linker between the scaffold and the substituted phenyl. The antiplasmodial activity was best with compounds that had the phenyl ring substituted with hydrophobic electron withdrawing groups.  相似文献   

19.
The behavior of a series of 3-amino-2-oxazolidinone derivatives with a potential hypnotic activity on achiral (octadecylsilane) and chiral (cellulose tris(4-methylbenzoate)) stationary phases was examined. The compounds differed in the composition of a substituted aromatic ring containing different substituents in different positions. It was possible to resolve all the compounds with selectivity 1.11 < or = alpha < or = 2.74. The enantiodifferentiating power of substituents was correlated to their electron donating ability and position in the aromatic ring.  相似文献   

20.
A series of pyrazolo[3.4,d]thiazole hybrids 6 were synthesized from 5-arylidene-2-imino-3-(4-arylthiazol-2-yl)-thiazolidin-4-ones 5. The 5-arylidene-2-imino-3-(4-arylthiazol-2-yl)-thiazolidin-4-ones 5 were synthesized from 2-amino-4-arylthiazoles 1 and 2-chloro-acetamido-4-arylthiazoles 2 via the formation of 2-imino-3-(4-substituted-arylthiazol-2-yl)-thiazolidin-4-ones 3 using substituted aldehydes 4. The 5-acrylidene derivative 5 on cyclisation with phenyl hydrazine give the pyrazolo [3, 4, d] thiazole derivatives 6. The obtained pyrazolo [3.4, d]thiazole derivatives were studied as anti-HIV-1 NNRT inhibitors. It was found that these compounds might have potent RT inhibition activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号