首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression of interleukin-1 beta (IL-1 beta) mRNA in the cerebral cortex, hippocampus, striatum, and thalamus of rats was studied after transient forebrain ischemia. IL-1 beta mRNA was not detected in all these regions of sham-operated control rats. IL-1 beta mRNA was induced after transient forebrain ischemia and reached a detectable level in all regions examined 15 min after the start of recirculation. The induction of IL-1 beta mRNA had a few peaks, that is, peaks were observed at 30 and 240 min in the four regions examined, and another peak was observed at 90 min in the striatum. One day after the start of recirculation, IL-1 beta mRNA levels were markedly decreased, but even 7 days after that, IL-1 beta mRNA was found at very low levels in all regions examined. The amounts of c-fos and beta-actin mRNAs on the same blots were also examined. The induction of c-fos mRNA was transient and had only one peak in all regions examined, whereas the levels of beta-actin mRNA in these regions were fairly constant throughout the recirculation period. Thus, we provide the first evidence for a characteristic expression of IL-1 beta mRNA in several brain regions after transient forebrain ischemia.  相似文献   

2.
The synthesis rate of brain acetylcholine (ACh) was estimated 30 min and 5 days following transient forebrain ischemia performed by 10 min bilateral carotid occlusion in gerbils. ACh synthesis was evaluated from the conversion of radiolabeled choline (Ch) into ACh after an i.v. administration of [methyl-3H]Ch. Endogenous and labeled Ch and ACh were quantified by HPLC. The synthesis rate of ACh was significantly decreased following 30 min of recirculation. The reductions reached 55.4% in the hippocampus, 51.2% in the cerebral cortex and 44.4% in the striatum. Five days after ischemia, the values returned to normal in the cerebral cortex and in the striatum, while ACh synthesis remained selectively lowered (–30.4%, p<0.01) in the hippocampus. These cholinergic alterations may account for both early and delayed post-ischemic behavioral and mnesic deficits.  相似文献   

3.
Mitochondrial respiratory function, assessed from the rate of oxygen uptake by homogenates of rat brain subregions, was examined after 30 min of forebrain ischemia and at recirculation periods of up to 48 h. Ischemia-sensitive regions which develop extensive neuronal loss during the recirculation period (dorsal-lateral striatum, CA1 hippocampus) were compared with ischemia-resistant areas (paramedian neocortex, CA3 plus CA4 hippocampus). All areas showed reductions (to 53-69% of control) during ischemia for oxygen uptake rates determined in the presence of ADP or an uncoupling agent, which then recovered within 1 h of cerebral recirculation. In the ischemia-resistant regions, oxygen uptake rates remained similar to control values for at least 48 h of recirculation. After 3 h of recirculation, a significant decrease in respiratory activity (measured in the presence of ADP or uncoupling agent) was observed in the dorsal-lateral striatum which progressed to reductions of greater than 65% of the initial activity by 24 h. In the CA1 hippocampus, oxygen uptake rates were unchanged for 24 h, but were significantly reduced (by 30% in the presence of uncoupling agent) at 48 h. These alterations parallel the development of histological evidence of ischemic cell change determined previously and apparently precede the appearance of differential changes between sensitive and resistant regions in the content of high-energy phosphate compounds. These results suggest that alterations of mitochondrial activity are a relatively early change in the development of ischemic cell death and provide a sensitive biochemical marker for this process.  相似文献   

4.
Abstract: Microtubule-associated protein 2 (MAP-2) was studied in the gerbil hippocampus and striatum after transient ischemia. Western immunoblot analysis shows that there is a significant decrease of MAP-2 in the dorsolateral sector of the striatum and a slight decrease of MAP-2 in the CA1 region of the hippocampus 6–12 h after ischemia in the gerbil forebrain. The immunohistochemical staining pattern of MAP-2 in these two regions also shows a loss of immunostaining of MAP-2. In particular, a beaded MAP-2 immunostaining pattern at the apical dendritic region of the CA1 neurons of the hippocampus was found within 12 h after ischemia compared with the smooth dendritic immunostaining of MAP-2 in normal CA1 neurons. In vitro assays of MAP-2 degradation suggest that dendritic loss of immunoreactivity after ischemia seen on western blots may be due to calpain I degradation of MAP-2. Loss of MAP-2 in both the striatum and hippocampus was found to occur earlier than spectrin degradation by western blot analysis. These results suggest that loss of MAP-2 may participate in the initial phase of neuronal dysfunction and that dendritic breakdown may be a first sign of neurodegeneration.  相似文献   

5.
Using Percoll density gradient centrifugation, free (nonsynaptosomal) mitochondria were isolated from the dorsal-lateral striatum and paramedian neocortex of rats during complete forebrain ischemia and reperfusion. Mitochondria prepared from either region after 30 min of ischemia showed decreased state 3 (ADP and substrate present) and uncoupled respiration rates (19-45% reductions) with pyruvate plus malate as substrates, whereas state 4 respiration (no ADP present) was preserved. At 6 h of recirculation, state 3 and uncoupled respiration rates for mitochondria from the paramedian neocortex (a region resistant to ischemic damage) were similar to or even increased compared with control values. By contrast, in mitochondria from the dorsal-lateral striatum (a region containing neurons susceptible to global ischemia), decreases in state 3 and uncoupled respiration rates (25 and 30% less than control values) were again observed after 6 h of recirculation. With succinate as respiratory substrate, however, no significant differences from control values were found in either region at this time point. By 24 h of recirculation, respiratory activity with either pyruvate plus malate or succinate was greatly reduced in samples from the dorsal-lateral striatum, probably reflecting complete loss of function in some organelles. In contrast with these marked changes in free mitochondria, the respiratory properties of synaptosomal mitochondria, assessed from measurements in unfractionated homogenates, were unchanged from controls in the dorsal-lateral striatum at each of the time points studied, but showed reductions (19-22%) during ischemia and after 24 h of recirculation in the paramedian neocortex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
To determine the role of nerve growth factor (NGF) in ischemic brain damage, we measured the temporal and regional changes in the level of NGF in the hippocampal subfields, the cerebral cortex, the striatum, and the septum at 1, 2, 7, and 30 days after transient forebrain ischemia using a highly sensitive sandwich-type enzyme immunoassay system for the beta-subunit of mouse 7S NGF (beta-NGF). We also analyzed glial fibrillary acidic protein immunoreactivity in the hippocampus to ascertain the contribution of reactive astrocytes to NGF production after an ischemic insult. In the CA1 subfield of the hippocampus, the level of beta-NGF decreased slightly 2 days after ischemia (not significant), at which time CA1 pyramidal cell loss began to occur, and increased by 40% 30 days after ischemia (p less than 0.05). A marked increase in glial fibrillary acidic protein-positive astrocytes in the CA1 subfield 2-30 days after ischemia suggests that the reactive astrocytes participated in a gradual increase in the level of beta-NGF after recirculation. The level of beta-NGF in the dentate gyrus decreased transiently 2 days (p less than 0.05) and 7 days (p less than 0.01) after ischemia, followed by recovery to the level of control animals 30 days after ischemia. The level of beta-NGF in the septum gradually decreased 7 days (-27%, p less than 0.05) and 30 days (-43%, p less than 0.01) after ischemia. The levels of beta-NGF in the cerebral cortex and striatum remained unaltered throughout the observation period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Abstract: Phosphocreatine, ATP, and glucose were severely depleted, and the lactate levels were increased in the paramedian neocortex, dorsal-lateral striatum, and CA1 zone of hippocampus of rats exposed to 30 min of forebrain ischemia. Upon recirculation of the brain, phosphocreatine, ATP, and lactate concentrations recovered to control values in the paramedian neocortex and CA1 zone of hippocampus and to near-control values in the striatum. The phosphocreatine and ATP concentrations then fell and the lactate levels rose in the striatum after 6–24 h, and in the CA1 zone of hippocampus after 24–72 h. The initial recovery and subsequent delayed changes in the phosphocreatine, ATP, and lactate concentrations in the striatum and hippocampus coincided with the onset and progression of morphological injury in these brain regions. The results suggest that cells in these regions regain normal or near-normal mitochondrial function and are viable, in terms of energy production, for many hours before unknown mechanisms cause irreversible neuronal injury.  相似文献   

8.
Administration of methylazoxymethanol (MAM; 25 mg/kg) to pregnant rats at gestational day 15 (GD 15) induces a marked reduction of telencephalic areas of the offspring brain. Previous neurochemical studies demonstrated a marked cholinergic hyperinnervation in the cerebral cortex of microencephalic rats. In this study we have evaluated whether this cholinergic hyperinnervation could result in altered functionality of muscarinic receptors. Acetylcholinesterase activity (AChE) was increased by 69% in the cerebral cortex of MAM treated rats confirming a relative hyperinnervation, whereas in the hippocampus and striatum no significant changes were observed. Despite the marked hyperinnervation, in the cerebral cortex of microencephalic rats neither muscarinic receptor-stimulated phosphoinositide metabolism nor muscarinic, receptor density were altered. No differences in receptor density were also observed in the hippocampus and striatum. Chronic diisopropylfluorophosphate (DFP) administration induced a marked decrease of AChE activity and down-regulation of muscarinic receptors whereas atropine administration resulted in receptor up-regulation in cerebral cortex, striatum and hippocampus of both control and MAM rats. The results confirm a relative cholinergic hyperinnervation in the cerebral cortex of microencephalic rats and demonstrate that the regulation of muscarinic receptor-stimulated phosphoinositide metabolism and muscarinic receptor plasticity is not modified in a condition of increased cholinergic presynaptic terminals.  相似文献   

9.
Rats were treated with alpha-methyl-para-tyrosine (AMT, 250 mg/kg, i.p), an hydroxylase inhibitor, in order to decrease brain levels of catecholamines. Six hours later, when cerebral dopamine (DA) and norepinephrine were reduced by about 80%, a transient forebrain ischemia of 30 min duration was induced by four-vessel occlusion technique. Evaluation of brain damage 72 hours after ischemia showed that AMT treatment significantly decreased neuronal necrosis in the striatum but had no cytoprotective effect in the CA1 sector of the hippocampus and in the neocortex. AMT treatment reduced mortality within the ischemic period but did not affect either the mortality within the recirculation period or the postischemic neurologic deficit. These results suggest that the striatal cytoprotective effect of AMT is linked to cerebral DA depletion and that excessive release of DA during ischemia or dopaminergic hyperactivity during recirculation play a detrimental role in the development of ischemic cell damage in the striatum.  相似文献   

10.
The effects of a new calcium channel blocker, 1-[bis(4-fluorophenyl)methyl]-4-(2,3,4-trimethoxybenzyl)-piperazine dihydrochloride (KB-2796), on delayed neuronal death (DND) in the hippocampus were examined in gerbils in comparison with those of pentobarbital and flunarizine. The neuronal density in the hippocampal CA1 subfield was counted on the seventh day of recirculation following 5 min of bilateral carotid occlusion, and protein biosynthesis in the brain was also determined at 1, 2, 4, 24, and 72 h following occlusion. The drugs were intraperitoneally administered after recirculation. KB-2796 (10 mg/kg) significantly prevented DND in the CA1 subfield. Pentobarbital (40 mg/kg), but not flunarizine (3 and 10 mg/kg), inhibited DND. Protein synthetic activity in the CA1 subfield was reduced by ischemia and the reduction was not restored even at 72 h after recirculation. KB-2796 did not ameliorate the reduction of protein synthesis in the CA1 subfield by 24 h after recirculation, but in one of three animals restoration of protein synthesis was observed at 72 h of recirculation. Pentobarbital also restored the reduced protein synthesis in two of three animals at 72 h. These results suggest that calcium influx into neurons participates in the pathogenesis of DND, and also that KB-2796 might prevent both morphological and functional cell damage in CA1 neurons induced by transient ischemia.  相似文献   

11.
12.
The purpose of this investigation was to investigate pathomechanisms responsible for the deleterious effects of repeated episodes of brief forebrain ischemia. Halothane-anesthetized male Wistar rats were subjected to either (a) a single 15-min period or (b) three 5-min periods (separated by 1 h) of global forebrain ischemia by bilateral carotid artery occlusions plus hypotension (50 mm Hg), followed by various periods of recirculation. Brain temperature was normothermic throughout. In one series of rats, extracellular levels of glutamate, glycine, and gamma-aminobutyric acid (GABA) were measured in the dorsolateral striatum (n = 6-8 per group) and lateral thalamus (n = 4-6 per group) by microdialysis and HPLC before and during ischemia and during 3-5 h of recirculation. In a parallel series of rats (n = 6 per group), ischemic cell change was quantified at 2 (dark neurons), 24, or 72 h following either single or multiple ischemic insults. A single 15-min ischemic period led to massive glutamate release (13-fold increase; p = 0.001), which returned to normal by 20-30 min of recirculation and remained normal thereafter. By contrast, in rats with three 5-min periods of ischemia, the glutamate level rise with each repeated insult (four- to 4.5-fold; p < or = 0.02) was smaller than that observed during the single 15-min insult, but a late sustained rise (five- to six-fold; p < 0.05) occurred at 2-3 h of recirculation. Brief ischemia-induced elevations of glycine and GABA levels were detected in both the single- and multiple-insult groups, with normalization during recirculation. In contrast, the excitotoxic index, a composite measure of neurotransmitter release ([glutamate] x [glycine]/[GABA]), differed markedly following single versus multiple insults (p = 0.002 by repeated-measures analysis of variance) and increased by seven- to 12-fold (p < 0.05) at 1-3 h following the third insult. The total amount of glutamate released was 3.3-fold higher in the multiple-insult than in the single-insult group (p < 0.02). At 2 h of recirculation, histopathological analysis of dorsolateral striatum showed a significantly greater frequency of dark neurons in the multiple- than in the single-insult group (p < 0.05 by analysis of variance). In the thalamus, a higher frequency of ischemic neurons was seen in the multiple-than in the single-insult group at all intervals studied. Thus, in rats with multiple ischemic insults, accelerated ischemic damage was found in the striatum, and severe ischemic injury was documented in the thalamus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Abstract: It is well established that ischemia-induced release of glutamate and the subsequent activation of postsynaptic glutamate receptors are important processes involved in the development of ischemic neuronal damage. Moderate intraischemic hypothermia attenuates glutamate release and confers protection from ischemic damage, whereas mild intraischemic hyperthermia increases glutamate release and augments ischemic pathology. As protein kinase C (PKC) is implicated in neurotransmitter release and glutamate receptor-mediated events, we evaluated the relationship between intraischemic brain temperature and PKC activity in brain regions known to be vulnerable or nonvulnerable to transient global ischemia. Twenty minutes of bilateral carotid artery occlusion plus hypotension were induced in rats in which intraischemic brain temperature was maintained at 30°C, 37°C, or 39°C. Prior to and following ischemia, brain temperature was 37°C in all groups. Cytosolic, membrane-bound, and total PKC activities were determined in hippocampal, striatal, cortical, and thalamic homogenates at the end of ischemia and at 0.25–24 h of recirculation. PKC activity of control rats varied by region and were affected by altered brain temperature. For both membrane-bound and cytosolic PKC, there was a significant temperature effect, and for membrane-bound PKC there was also a significant effect of region. Rats with normothermic ischemia (37°C) showed extensive depressions of all PKC fractions. Hippocampus and striatum were noteworthy for depressions in PKC activity extending from the earliest (15 min) to the latest (24 h) recirculation times studied, whereas cortex showed PKC depressions chiefly during the first hour of recirculation, and the thalamic pattern was inconsistent. In contrast, in rats with hypothermic ischemia (30°C), significant overall effects were noted only for total PKC in thalamus, which showed depressed levels at both 1 and 24 h of recirculation. Rats with hyperthermic (39°C) ischemia also showed significant overall effects for the time course of membrane-bound, cytosolic, and total PKC activities in the hippocampus, striatum, and cortex. However, no significant reductions in PKC indices were observed in the thalamus. For membrane-bound PKC, significant temperature effects were noted for hippocampus, striatum, and cortex, but not for thalamus. For cytosolic, as well as total PKC, activity, significant temperature effects were noted for all four brain regions. Our results indicate that ischemia, followed by reperfusion, induces a significant reduction in PKC activity and that this process is highly influenced by the brain temperature during ischemia. Furthermore, our data also establish that differences exist in the response of PKC to ischemia/recirculation in vulnerable versus non-vulnerable brain regions. These results suggest that PKC alterations may be an important factor involved in the modulatory effects of temperature on the outcome following transient global ischemia.  相似文献   

14.
Abstract: A procedure was established for determining the calcium content of mitochondria isolated from rat brain subregions based on changes in fura-2 fluorescence after disruption of the organelles with Triton X-100 and sodium dodecyl sulfate. Mitochondria isolated from the forebrain of normal rats contained 2.5 ± 0.9 nmol of calcium/mg of protein. A 30-min ischemic period produced an approximately twofold increase in the calcium content of mitochondria isolated from the dorsolateral striatum, a region in which most neurons die within 24 h after this period of ischemia. The calcium content of mitochondria from the paramedian cortex, a region in which there are few ischemia-susceptible neurons, tended to be similarly increased, although this difference was not statistically significant. Larger increases (to approximately five times control values) were seen in mitochondria isolated from both regions after 10 min of recirculation. By 1 h of recirculation, mitochondrial calcium had returned close to preischemic control values in both regions. Longer recirculation periods produced no further changes in the calcium content of mitochondria from the paramedian cortex. However, mitochondrial calcium was again increased in the dorsolateral striatum after 6 h (6.5 nmol of calcium/mg of protein) and 24 h (8.7 nmol of calcium/mg of protein) of recirculation. This regionally selective increase in calcium in the dorsolateral striatum preceded the period during which the majority of neurons in this region exhibit advanced degenerative changes. Thus, this increase may be an essential step, albeit a late one, in the development of neuronal loss.  相似文献   

15.
Pyridoxal 5'-phosphate (PLP) is an important cofactor in a wide range of biochemical reactions, such as the metabolism of various amino acids, including GABA. PLP is synthesized by the oxidation of pyridoxine 5'-phosphate (PNP), which is catalyzed by PNP oxidase (PNPO). We observed the changes in cresyl violet-positive neurons, PNPO immunoreactivity and PNPO protein levels in the somatosensory cortex and striatum in gerbils after 5 min of transient forebrain ischemia. Cresyl violet-positive neurons showed condensed cytoplasm in the somatosensory cortex and lateral part of the striatum at 2 days after ischemia/reperfusion. PNPO immunoreactivity began to increase in neurons in layers III and V at 3 h after ischemia/reperfusion and this immunoreactivity was significantly increased at 12 h after ischemia/reperfusion. Thereafter, PNPO immunoreactivity decreased with time after ischemia/reperfusion. PNPO-immunoreactive neurons were only slightly detected in the lateral part of the striatum at 12 h after ischemia/reperfusion. In addition, the PNPO protein levels in both the somatosensory cortex and striatum homogenates peaked at 12 h after ischemia/reperfusion. These results indicate that PNPO is significantly increased in the ischemic somatosensory cortex and lateral part of the striatum, and this change in the level of PNPO may be associated with the neuronal damage induced by ischemia.  相似文献   

16.
1. The aim of this study was to validate the role of postconditioning, used 2 days after lethal ischemia, for protection of selectively vulnerable brain neurons against delayed neuronal death.2. Eight, 10, or 15 min of transient forebrain ischemia in rat (four-vessel occlusion model) was used as initial lethal ischemia. Fluoro Jade B, the marker of neurodegeneration, and NeuN, a specific neuronal marker were used for visualization of changes 7 or 28 days after ischemia without and with delayed postconditioning.3. Our results confirm that postconditioning if used at right time and with optimal intensity can prevent process of delayed neuronal death. At least three techniques, known as preconditioners, can be used as postconditioning: short ischemia, 3-nitropropionic acid and norepinephrine. A cardinal role for the prevention of death in selectively vulnerable neurons comprises synthesis of proteins during the first 5 h after postconditioning. Ten minutes of ischemia alone is lethal for 70% of pyramidal CA1 neurons in hippocampus. Injection of inhibitor of protein synthesis (Cycloheximide), if administered simultaneously with postconditioning, suppressed beneficial effect of postconditioning and resulted in 50% of CA1 neurons succumbing to neurodegeneration. Although, when Cycloheximide was injected 5 h after postconditioning, this treatment resulted in survival of 90% of CA1 neurons.4. Though postconditioning significantly protects hippocampal CA1 neurons up to 10 min of ischemia, its efficacy at 15 min ischemia is exhausted. However, protective impact of postconditioning in less-sensitive neuronal populations (cortex and striatum) is very good after such a damaging insult like 15 min ischemia. This statement also means that up to 15 min of ischemia, postconditioning does not induce cumulation of injuries produced by the first and the second stress.  相似文献   

17.
Lipid peroxides, quantitated as lipid conjugated dienes, and (Na+,K+)-ATPase activity were assayed concurrently in brains of control rats and in three groups subjected to 30 min of reversible forebrain ischemia followed by 0, 1, and 4 hr of recirculation. Multiple small samples were taken from lateral, dorsolateral and medial cortex, hippocampus, thalamus and striatum following in situ freezing. (Na+,K+)-ATPase activity was elevated in hippocampus, dorsolateral and lateral cortex (P<0.10) and in thalamus (P<0.05) following 30 min ischemia. ATPase activity in medial cortex continued to increase during the first 1 hr of recirculation (P<0.10). Following 4 hr of recirculation, decreased enzyme activities were observed in all of these regions (lateral cortex and hippocampus,P<0.10). No changes in ATPase activity were observed in samples from striatum. Of the regional samples assayed for lipid peroxide content, the incidence of conjugated dienes as a function of recirculation time was 6% (0 hr), 23% (1 hr), and 17% (4 hr). For these samples, plots of normalized ATPase activity vs. tissue conjugated diene concentration revealed that normalized ATPase activity varied with recirculation time, but was independent of the magnitude of the lipid peroxidative process (expressed in terms of tissue conjugated diene concentration). These results suggest that disturbances in membrane structure and function presumed to arise from lipid peroxidation are not responsible for the behavior of the ATPase under the current in vivo conditions.  相似文献   

18.
A transient brain ischemia of 10 min duration was produced in rats by electrocautery of the vertebral arteries and reversible occlusion of the carotid arteries. Ischemia reduced blood flow to 10-18% of the control values in forebrain structures (cortex, striatum, thalamus) and to 25-50% in the mesencephalon, cerebellum and brain stem. In these last structures, after 30 min of recirculation, the flow rates returned to normal values but a 20-35% reduction of blood flow was present in the forebrain structures, indicating that the development of the postischemic hypoperfusion was related to the severity of the preceding ischemia. After 30 min of recirculation, there was a near complete recovery of the high energy compounds but a residual metabolic dysfunction was evidenced by an increase in lactate/pyruvate ratio and an elevation of the glucose content, suggesting a depression of cerebral metabolism which may account for the brain hypoperfusion.  相似文献   

19.
Polyamine Changes in Reversible Cerebral Ischemia   总被引:4,自引:4,他引:0  
Putrescine, spermidine, and spermine levels were measured in the cortex, caudoputamen, and hippocampus of rats during 30 min of severe forebrain ischemia (induced by occlusion of both carotid and vertebral arteries) and subsequent recirculation. During ischemia, polyamine levels did not change significantly. During postischemic recirculation, however, putrescine levels dramatically increased whereas those of spermine and spermidine did not change, with the exception of the severely damaged caudoputamen, where the concentration declined after 24 h. The increase of putrescine is explained by postischemic activation of ornithine decarboxylase and inhibition of S-adenosylmethionine decarboxylase. It is suggested that the accumulation of putrescine during postischemic recirculation may be responsible for the delayed neuronal death occurring after ischemia.  相似文献   

20.
In this study we investigated iron deposition in the hippocampus CA1 area and the corpus striatum pars dorsolateralis in a rat model of cerebral ischemia and ischemic tolerance. Forebrain ischemia was induced by four-vessel occlusion for 5-min as ischemic preconditioning. Two days after the preconditioning or the sham operation, a second ischemia was induced for 20-min. With the use of iron histochemistry, regional changes were examined after 2 to 8 weeks of recirculation following the 20-min ischemia with or without preconditioning. Perl's reaction with DAB intensification demonstrated iron deposits in the CA1 area and in the corpus striatum pars dorsolateralis after 2 weeks of recirculation. These iron deposits gradually increased in density and formed clusters by the 8th week. When the rats were exposed to 5-min ischemia 2 days before lethal 20-min ischemia, the deposition of iron in the CA1 region of the hippocampus and also in the corpus striatum pars dorsolateralis was decreased and produced a minimal number of iron-containing cells between the second and the 8th week of recirculation. Preconditioning with sublethal 5-min ischemia followed by 2 days of reperfusion also prevented the neuronal destruction of the hippocampal CA1 region induced by 20-min ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号