首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cross-cultural anthropologists have increasingly used phylogenetic methods to study cultural variation. Because cultural behaviours can be transmitted horizontally among socially defined groups, however, it is important to assess whether phylogeny-based methods--which were developed to study vertically transmitted traits among biological taxa--are appropriate for studying group-level cultural variation. Here, we describe a spatially explicit simulation model that can be used to generate data with known degrees of horizontal donation. We review previous results from this model showing that horizontal transmission increases the type I error rate of phylogenetically independent contrasts in studies of correlated evolution. These conclusions apply to cases in which two traits are transmitted as a pair, but horizontal transmission may be less problematic when traits are unlinked. We also use the simulation model to investigate whether measures of homology (the consistency index and the retention index) can detect horizontal transmission of cultural traits. Higher rates of evolutionary change have a stronger depressive impact on measures of homology than higher rates of horizontal transmission; thus, low consistency or retention indices are not necessarily indicative of 'ethnogenesis'. Collectively, these studies demonstrate the importance of using simulations to assess the validity of methods in cross-cultural research.  相似文献   

2.
When individuals in a population can acquire traits through learning, each individual may express a certain number of distinct cultural traits. These traits may have been either invented by the individual himself or acquired from others in the population. Here, we develop a game theoretic model for the accumulation of cultural traits through individual and social learning. We explore how the rates of innovation, decay, and transmission of cultural traits affect the evolutionary stable (ES) levels of individual and social learning and the number of cultural traits expressed by an individual when cultural dynamics are at a steady‐state. We explore the evolution of these phenotypes in both panmictic and structured population settings. Our results suggest that in panmictic populations, the ES level of learning and number of traits tend to be independent of the social transmission rate of cultural traits and is mainly affected by the innovation and decay rates. By contrast, in structured populations, where interactions occur between relatives, the ES level of learning and the number of traits per individual can be increased (relative to the panmictic case) and may then markedly depend on the transmission rate of cultural traits. This suggests that kin selection may be one additional solution to Rogers's paradox of nonadaptive culture.  相似文献   

3.
In this paper, we explore how experimental studies of cultural transmission in adult humans can address general questions regarding the 'who, what, when and how' of human cultural transmission, and consequently inform a theory of human cultural evolution. Three methods are discussed. The transmission chain method, in which information is passed along linear chains of participants, has been used to identify content biases in cultural transmission. These concern the kind of information that is transmitted. Several such candidate content biases have now emerged from the experimental literature. The replacement method, in which participants in groups are gradually replaced or moved across groups, has been used to study phenomena such as cumulative cultural evolution, cultural group selection and cultural innovation. The closed-group method, in which participants learn in groups with no replacement, has been used to explore issues such as who people choose to learn from and when they learn culturally as opposed to individually. A number of the studies reviewed here have received relatively little attention within their own disciplines, but we suggest that these, and future experimental studies of cultural transmission that build on them, can play an important role in a broader science of cultural evolution.  相似文献   

4.
Culturally transmitted traits are observed in a wide array of animal species, yet we understand little about the costs of the behavioural patterns that underlie culture, such as innovation and social learning. We propose that infectious diseases are a significant cost associated with cultural transmission. We investigated two hypotheses that may explain such a connection: that social learning and exploratory behaviours (specifically, innovation and extractive foraging) either compensate for existing infection or increase exposure to infectious agents. We used Bayesian comparative methods, controlling for sampling effort, body mass, group size, geographical range size, terrestriality, latitude and phylogenetic uncertainty. Across 127 primate species, we found a positive association between pathogen richness and rates of innovation, extractive foraging and social learning. This relationship was driven by two independent phenomena: socially contagious diseases were positively associated with rates of social learning, and environmentally transmitted diseases were positively associated with rates of exploration. Because higher pathogen burdens can contribute to morbidity and mortality, we propose that parasitism is a significant cost associated with the behavioural patterns that underpin culture, and that increased pathogen exposure is likely to have played an important role in the evolution of culture in both non-human primates and humans.  相似文献   

5.
We investigate how evolution proceeds across multiple scales considering culture as species, hierarchically integrated systems, assemblages of many coherent units, and collections of ephemeral entities in order to examine the nature of Early Thule cultural evolution with reference to material culture and adaptive strategies. Results suggest that harpoon heads evolved via cultural transmission processes with little impact from terrestrial ecological context. In contrast, characteristics of architectural features, stone tool assemblages, and combined architecture and stone tools displayed evidence for significant effects of both cultural transmission and select measures of ecological context. There is no evidence that evolution was ‘evoked’ by ecological context alone.  相似文献   

6.
The question of how much the outcomes of cultural evolution are shaped by the cognitive capacities of human learners has been explored in several disciplines, including psychology, anthropology and linguistics. We address this question through a detailed investigation of transmission chains, in which each person passes information to another along a chain. We review mathematical and empirical evidence that shows that under general conditions, and across experimental paradigms, the information passed along transmission chains will be affected by the inductive biases of the people involved-the constraints on learning and memory, which influence conclusions from limited data. The mathematical analysis considers the case where each person is a rational Bayesian agent. The empirical work consists of behavioural experiments in which human participants are shown to operate in the manner predicted by the Bayesian framework. Specifically, in situations in which each person's response is used to determine the data seen by the next person, people converge on concepts consistent with their inductive biases irrespective of the information seen by the first member of the chain. We then relate the Bayesian analysis of transmission chains to models of biological evolution, clarifying how chains of individuals correspond to population-level models and how selective forces can be incorporated into our models. Taken together, these results indicate how laboratory studies of transmission chains can provide information about the dynamics of cultural evolution and illustrate that inductive biases can have a significant impact on these dynamics.  相似文献   

7.
The evolution of cumulative adaptive culture has received widespread interest in recent years, especially the factors promoting its occurrence. Current evolutionary models suggest that an increase in population size may lead to an increase in cultural complexity via a higher rate of cultural transmission and innovation. However, relatively little attention has been paid to the role of natural selection in the evolution of cultural complexity. Here we use an agent-based simulation model to demonstrate that high selection pressure in the form of resource pressure promotes the accumulation of adaptive culture in spite of small population sizes and high innovation costs. We argue that the interaction of demography and selection is important, and that neither can be considered in isolation. We predict that an increase in cultural complexity is most likely to occur under conditions of population pressure relative to resource availability. Our model may help to explain why culture change can occur without major environmental change. We suggest that understanding the interaction between shifting selective pressures and demography is essential for explaining the evolution of cultural complexity.  相似文献   

8.
Innovation is often assumed to be the work of a talented few, whose products are passed on to the masses. Here, we argue that innovations are instead an emergent property of our species'' cultural learning abilities, applied within our societies and social networks. Our societies and social networks act as collective brains. We outline how many human brains, which evolved primarily for the acquisition of culture, together beget a collective brain. Within these collective brains, the three main sources of innovation are serendipity, recombination and incremental improvement. We argue that rates of innovation are heavily influenced by (i) sociality, (ii) transmission fidelity, and (iii) cultural variance. We discuss some of the forces that affect these factors. These factors can also shape each other. For example, we provide preliminary evidence that transmission efficiency is affected by sociality—languages with more speakers are more efficient. We argue that collective brains can make each of their constituent cultural brains more innovative. This perspective sheds light on traits, such as IQ, that have been implicated in innovation. A collective brain perspective can help us understand otherwise puzzling findings in the IQ literature, including group differences, heritability differences and the dramatic increase in IQ test scores over time.  相似文献   

9.
Developmental plasticity and the evolution of parental effects   总被引:3,自引:0,他引:3  
One of the outstanding challenges for evolutionary biologists is to understand how developmental plasticity can influence the evolutionary process. Developmental plasticity frequently involves parental effects, which might enable adaptive and context-dependent transgenerational transmission of phenotypic strategies. However, parent-offspring conflict will frequently result in parental effects that are suboptimal for parents, offspring or both. The fitness consequences of parental effects at evolutionary equilibrium will depend on how conflicts can be resolved by modifications of developmental processes, suggesting that proximate studies of development can inform ultimate questions. Furthermore, recent studies of plants and animals show how studies of parental effects in an ecological context provide important insights into the origin and evolution of adaptation under variable environmental conditions.  相似文献   

10.
In species subject to individual and social learning, each individual is likely to express a certain number of different cultural traits acquired during its lifetime. If the process of trait innovation and transmission reaches a steady state in the population, the number of different cultural traits carried by an individual converges to some stationary distribution. We call this the trait-number distribution. In this paper, we derive the trait-number distributions for both individuals and populations when cultural traits are independent of each other. Our results suggest that as the number of cultural traits becomes large, the trait-number distributions approach Poisson distributions so that their means characterize cultural diversity in the population. We then analyse how the mean trait number varies at both the individual and population levels as a function of various demographic features, such as population size and subdivision, and social learning rules, such as conformism and anti-conformism. Diversity at the individual and population levels, as well as at the level of cultural homogeneity within groups, depends critically on the details of population demography and the individual and social learning rules.  相似文献   

11.
The role of cultural group selection in the evolution of human cooperation is hotly debated. It has been argued that group selection is more effective in cultural evolution than in genetic evolution, because some forms of cultural transmission (conformism and/or the tendency to follow a leader) reduce intra-group variation while creating stable cultural variation between groups. This view is supported by some models, while other models lead to contrasting and sometimes opposite conclusions. A consensus view has not yet been achieved, partly because the modelling studies differ in their assumptions on the dynamics of cultural transmission and the mode of group selection. To clarify matters, we created an individual-based model allowing for a systematic comparison of how different social learning rules governing cultural transmission affect the evolution of cooperation in a group-structured population. We consider two modes of group selection (selection by group replacement or by group contagion) and systematically vary the frequency and impact of group-level processes. From our simulations we conclude that the outcome of cultural evolution strongly reflects the interplay of social learning rules and the mode of group selection. For example, conformism hampers or even prevents the evolution of cooperation if group selection acts via contagion; it may facilitate the evolution of cooperation if group selection acts via replacement. In contrast, leader-imitation promotes the evolution of cooperation under a broader range of conditions.  相似文献   

12.
Over the past decade, a major debate has taken place on the underpinnings of cultural changes in human societies. A growing array of evidence in behavioural and evolutionary biology has revealed that social connectivity among populations and within them affects, and is affected by, culture. Yet the interplay between prehistoric hunter–gatherer social structure and cultural transmission has typically been overlooked. Interestingly, the archaeological record contains large data sets, allowing us to track cultural changes over thousands of years: they thus offer a unique opportunity to shed light on long‐term cultural transmission processes. In this review, we demonstrate how well‐developed methods for social structure analysis can increase our understanding of the selective pressures underlying cumulative culture. We propose a multilevel analytical framework that considers finer aspects of the complex social structure in which regional groups of prehistoric hunter–gatherers were embedded. We put forward predictions of cultural transmission based on local‐ and global‐level network metrics of small‐scale societies and their potential effects on cumulative culture. By bridging the gaps between network science, palaeodemography and cultural evolution, we draw attention to the use of the archaeological record to depict patterns of social interactions and transmission variability. We argue that this new framework will contribute to improving our understanding of social interaction patterns, as well as the contexts in which cultural changes occur. Ultimately, this may provide insights into the evolution of human behaviour.  相似文献   

13.
Cultural variation in a population is affected by the rate of occurrence of cultural innovations, whether such innovations are preferred or eschewed, how they are transmitted between individuals in the population, and the size of the population. An innovation, such as a modification in an attribute of a handaxe, may be lost or may become a property of all handaxes, which we call “fixation of the innovation.” Alternatively, several innovations may attain appreciable frequencies, in which case properties of the frequency distribution—for example, of handaxe measurements—is important. Here we apply the Moran model from the stochastic theory of population genetics to study the evolution of cultural innovations. We obtain the probability that an initially rare innovation becomes fixed, and the expected time this takes. When variation in cultural traits is due to recurrent innovation, copy error, and sampling from generation to generation, we describe properties of this variation, such as the level of heterogeneity expected in the population. For all of these, we determine the effect of the mode of social transmission: conformist, where there is a tendency for each naïve newborn to copy the most popular variant; pro-novelty bias, where the newborn prefers a specific variant if it exists among those it samples; one-to-many transmission, where the variant one individual carries is copied by all newborns while that individual remains alive. We compare our findings with those predicted by prevailing theories for rates of cultural change and the distribution of cultural variation.  相似文献   

14.
Culture pervades human life and is at the origin of the success of our species. A wide range of other animals have culture too, but often in a limited form that does not complexify through the gradual accumulation of innovations. We developed a new paradigm to study cultural evolution in primates in order to better evaluate our closest relatives'' cultural capacities. Previous studies using transmission chain experimental paradigms, in which the behavioural output of one individual becomes the target behaviour for the next individual in the chain, show that cultural transmission can lead to the progressive emergence of systematically structured behaviours in humans. Inspired by this work, we combined a pattern reproduction task on touch screens with an iterated learning procedure to develop transmission chains of baboons (Papio papio). Using this procedure, we show that baboons can exhibit three fundamental aspects of human cultural evolution: a progressive increase in performance, the emergence of systematic structure and the presence of lineage specificity. Our results shed new light on human uniqueness: we share with our closest relatives essential capacities to produce human-like cultural evolution.  相似文献   

15.
Phylogenetic trees or networks representing cultural evolution are typically built using methods from biology that use similarities and differences in cultural traits to infer the historical relationships between the populations that produced them. While these methods have yielded important insights, researchers continue to debate the extent to which cultural phylogenies are tree-like or reticulated due to high levels of horizontal transmission. In this study, we propose a novel method for phylogenetic reconstruction using dynamic community detection that focuses not on the cultural traits themselves (e.g., musical features), but the people creating them (musicians). We used data from 1,498,483 collaborative relationships between electronic music artists to construct a cultural phylogeny based on observed population structure. The results suggest that, although vertical transmission appears to be dominant, the potential for horizontal transmission (indexed by between-population linkage) is relatively high and populations never become fully isolated from one another. In addition, we found evidence that electronic music diversity has increased between 1975 and 1999. The method used in this study is available as a new R package called DynCommPhylo. Future studies should apply this method to other cultural systems such as academic publishing and film, as well as biological systems where high resolution reproductive data is available, and develop formal inferential models to assess how levels of reticulation in evolution vary across domains.  相似文献   

16.
The past few years of research in human evolutionary genetics have provided novel insights and questions regarding how human adaptations to recent selective pressures have taken place. Here, we review the advances most relevant to understanding human evolution in response to pathogen-induced selective pressures. Key insights come from theoretical models of adaptive evolution, particularly those that consider spatially structured populations, and from empirical population genomic studies of adaptive evolution in humans. We also review the CCR5-Δ32 HIV resistance allele as a case study of pathogen resistance in humans. Taken together, the results make clear that the human response to pathogen-induced selection pressures depends on a complex interplay between the age of the pathogen, the genetic basis of potential resistance phenotypes, and how population structure impacts the adaptive process in humans.  相似文献   

17.
Many diverse infectious diseases exhibit seasonal dynamics. Seasonality in disease incidence has been attributed to seasonal changes in pathogen transmission rates, resulting from fluctuations in extrinsic climate factors. Multi-strain infectious diseases with strain-specific seasonal signatures, such as cholera, indicate that a range of seasonal patterns in transmission rates is possible in identical environments. We therefore consider pathogens capable of evolving their 'seasonal phenotype', a trait that determines the sensitivity of their transmission rates to environmental variability. We introduce a theoretical framework, based on adaptive dynamics, for predicting the evolution of disease dynamics in seasonal environments. Changes in the seasonality of environmental factors are one important avenue for the effects of climate change on disease. This model also provides a framework for examining these effects on pathogen evolution and associated disease dynamics. An application of this approach gives an explanation for the recent cholera strain replacement in Bangladesh, based on changes in monsoon rainfall patterns.  相似文献   

18.
Mesoudi A 《PloS one》2011,6(3):e18239
One of the hallmarks of the human species is our capacity for cumulative culture, in which beneficial knowledge and technology is accumulated over successive generations. Yet previous analyses of cumulative cultural change have failed to consider the possibility that as cultural complexity accumulates, it becomes increasingly costly for each new generation to acquire from the previous generation. In principle this may result in an upper limit on the cultural complexity that can be accumulated, at which point accumulated knowledge is so costly and time-consuming to acquire that further innovation is not possible. In this paper I first review existing empirical analyses of the history of science and technology that support the possibility that cultural acquisition costs may constrain cumulative cultural evolution. I then present macroscopic and individual-based models of cumulative cultural evolution that explore the consequences of this assumption of variable cultural acquisition costs, showing that making acquisition costs vary with cultural complexity causes the latter to reach an upper limit above which no further innovation can occur. These models further explore the consequences of different cultural transmission rules (directly biased, indirectly biased and unbiased transmission), population size, and cultural innovations that themselves reduce innovation or acquisition costs.  相似文献   

19.
Recent years have witnessed a re-evaluation of the cognitive capabilities of fishes, including with respect to social learning. Indeed, some of the best experimental evidence for animal traditions can be found in fishes. Laboratory experimental studies reveal that many fishes acquire dietary, food site and mating preferences, predator recognition and avoidance behaviour, and learn pathways, through copying other fishes. Concentrating on foraging behaviour, we will present the findings of laboratory experiments that reveal social learning, behavioural innovation, the diffusion of novel behaviour through populations and traditional use of food sites. Further studies reveal surprisingly complex social learning strategies deployed by sticklebacks. We will go on to place these observations of fish in a phylogenetic context, describing in which respects the learning and traditionality of fish are similar to, and differ from, that observed in other animals. We end by drawing on theoretical insights to suggest processes that may have played important roles in the evolution of the human cultural capability.  相似文献   

20.
Technology (i.e. tools, methods of cultivation and domestication, systems of construction and appropriation, machines) has increased the vital rates of humans, and is one of the defining features of the transition from Malthusian ecological stagnation to a potentially perpetual rising population growth. Maladaptations, on the other hand, encompass behaviours, customs and practices that decrease the vital rates of individuals. Technology and maladaptations are part of the total stock of culture carried by the individuals in a population. Here, we develop a quantitative model for the coevolution of cumulative adaptive technology and maladaptive culture in a ‘producer–scrounger’ game, which can also usefully be interpreted as an ‘individual–social’ learner interaction. Producers (individual learners) are assumed to invent new adaptations and maladaptations by trial-and-error learning, insight or deduction, and they pay the cost of innovation. Scroungers (social learners) are assumed to copy or imitate (cultural transmission) both the adaptations and maladaptations generated by producers. We show that the coevolutionary dynamics of producers and scroungers in the presence of cultural transmission can have a variety of effects on population carrying capacity. From stable polymorphism, where scroungers bring an advantage to the population (increase in carrying capacity), to periodic cycling, where scroungers decrease carrying capacity, we find that selection-driven cultural innovation and transmission may send a population on the path of indefinite growth or to extinction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号