首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are consistent individual differences in human intelligence, attributable to a single 'general intelligence' factor, g. The evolutionary basis of g and its links to social learning and culture remain controversial. Conflicting hypotheses regard primate cognition as divided into specialized, independently evolving modules versus a single general process. To assess how processes underlying culture relate to one another and other cognitive capacities, we compiled ecologically relevant cognitive measures from multiple domains, namely reported incidences of behavioural innovation, social learning, tool use, extractive foraging and tactical deception, in 62 primate species. All exhibited strong positive associations in principal component and factor analyses, after statistically controlling for multiple potential confounds. This highly correlated composite of cognitive traits suggests social, technical and ecological abilities have coevolved in primates, indicative of an across-species general intelligence that includes elements of cultural intelligence. Our composite species-level measure of general intelligence, 'primate g(S)', covaried with both brain volume and captive learning performance measures. Our findings question the independence of cognitive traits and do not support 'massive modularity' in primate cognition, nor an exclusively social model of primate intelligence. High general intelligence has independently evolved at least four times, with convergent evolution in capuchins, baboons, macaques and great apes.  相似文献   

2.
The social brain hypothesis argues that large brains have arisen over evolutionary time as a response to the social and ecological conflicts inherent in group living. We test predictions arising from the hypothesis using comparative data from birds and four mammalian orders (Carnivora, Artiodactyla, Chiroptera and Primates) and show that, across all non-primate taxa, relative brain size is principally related to pairbonding, but with enduring stable relationships in primates. We argue that this reflects the cognitive demands of the behavioural coordination and synchrony that is necessary to maintain stable pairbonded relationships. However, primates differ from the other taxa in that they also exhibit a strong effect of group size on brain size. We use data from two behavioural indices of social intensity (enduring bonds between group members and time devoted to social activities) to show that primate relationships differ significantly from those of other taxa. We suggest that, among vertebrates in general, pairbonding represents a qualitative shift from loose aggregations of individuals to complex negotiated relationships, and that these bonded relationships have been generalized to all social partners in only a few taxa (such as anthropoid primates).  相似文献   

3.
We present a detailed reanalysis of the comparative brain data for primates, and develop a model using path analysis that seeks to present the coevolution of primate brain (neocortex) and sociality within a broader ecological and life-history framework. We show that body size, basal metabolic rate and life history act as constraints on brain evolution and through this influence the coevolution of neocortex size and group size. However, they do not determine either of these variables, which appear to be locked in a tight coevolutionary system. We show that, within primates, this relationship is specific to the neocortex. Nonetheless, there are important constraints on brain evolution; we use path analysis to show that, in order to evolve a large neocortex, a species must first evolve a large brain to support that neocortex and this in turn requires adjustments in diet (to provide the energy needed) and life history (to allow sufficient time both for brain growth and for 'software' programming). We review a wider literature demonstrating a tight coevolutionary relationship between brain size and sociality in a range of mammalian taxa, but emphasize that the social brain hypothesis is not about the relationship between brain/neocortex size and group size per se; rather, it is about social complexity and we adduce evidence to support this. Finally, we consider the wider issue of how mammalian (and primate) brains evolve in order to localize the social effects.  相似文献   

4.
The 'social intelligence hypothesis' was originally conceived to explain how primates may have evolved their superior intellect and large brains when compared with other animals. Although some birds such as corvids may be intellectually comparable to apes, the same relationship between sociality and brain size seen in primates has not been found for birds, possibly suggesting a role for other non-social factors. But bird sociality is different from primate sociality. Most monkeys and apes form stable groups, whereas most birds are monogamous, and only form large flocks outside of the breeding season. Some birds form lifelong pair bonds and these species tend to have the largest brains relative to body size. Some of these species are known for their intellectual abilities (e.g. corvids and parrots), while others are not (e.g. geese and albatrosses). Although socio-ecological factors may explain some of the differences in brain size and intelligence between corvids/parrots and geese/albatrosses, we predict that the type and quality of the bonded relationship is also critical. Indeed, we present empirical evidence that rook and jackdaw partnerships resemble primate and dolphin alliances. Although social interactions within a pair may seem simple on the surface, we argue that cognition may play an important role in the maintenance of long-term relationships, something we name as 'relationship intelligence'.  相似文献   

5.
Mammalian brain volumes vary considerably, even after controlling for body size. Although several hypotheses have been proposed to explain this variation, most research in mammals on the evolution of encephalization has focused on primates, leaving the generality of these explanations uncertain. Furthermore, much research still addresses only one hypothesis at a time, despite the demonstrated importance of considering multiple factors simultaneously. We used phylogenetic comparative methods to investigate simultaneously the importance of several factors previously hypothesized to be important in neural evolution among mammalian carnivores, including social complexity, forelimb use, home range size, diet, life history, phylogeny, and recent evolutionary changes in body size. We also tested hypotheses suggesting roles for these variables in determining the relative volume of four brain regions measured using computed tomography. Our data suggest that, in contrast to brain size in primates, carnivoran brain size may lag behind body size over evolutionary time. Moreover, carnivore species that primarily consume vertebrates have the largest brains. Although we found no support for a role of social complexity in overall encephalization, relative cerebrum volume correlated positively with sociality. Finally, our results support negative relationships among different brain regions after accounting for overall endocranial volume, suggesting that increased size of one brain regions is often accompanied by reduced size in other regions rather than overall brain expansion.  相似文献   

6.
This paper explores the correlates of variation in dental development across the order Primates. We are particularly interested in how 1) dental precocity (percentage of total postcanine primary and secondary teeth that have erupted at selected absolute ages and life cycle stages) and 2) dental endowment at weaning (percentage of adult postcanine occlusal area that is present at weaning) are related to variation in body or brain size and diet in primates. We ask whether folivores have more accelerated dental schedules than do like-sized frugivores, and if so, to what extent this is part and parcel of a general pattern of acceleration of life histories in more folivorous taxa. What is the adaptive significance of variation in dental eruption schedules across the order Primates? We show that folivorous primate species tend to exhibit more rapid dental development (on an absolute scale) than comparably sized frugivores, and their dental development tends to be more advanced at weaning. Our data affirm an important role for brain (rather than body) size as a predictor of both absolute and relative dental development. Tests of alternative dietary hypotheses offer the strongest support for the foraging independence and food processing hypotheses.  相似文献   

7.
The basicranium is the keystone of the primate skull, and understanding its morphological interdependence on surrounding soft-tissue structures, such as the brain, can reveal important mechanisms of skull development and evolution. In particular, several extensive investigations have shown that, across extant adult primates, the degree of basicranial flexion and petrous orientation are closely linked to increases in brain size relative to cranial base length. The aim of this study was to determine if an equivalent link exists during prenatal life. Specific hypotheses tested included the idea that increases in relative endocranial size (IRE5), relative infratentorial size (RIE), and differential encephalization (IDE) determine the degree of basicranial flexion and coronal petrous reorientation during non-hominoid primate fetal development. Cross-sectional fetal samples of Alouatta caraya (n=17) and Macaca nemestrina (n=24) were imaged using high-resolution magnetic resonance imaging (hrMRI). Cranial base angles (CBA), petrous orientations (IPA), base lengths, and endocranial volumes were measured from the images. Findings for both samples showed retroflexion, or flattening, of the cranial base and coronal petrous reorientation as well as considerable increases in absolute and relative brain sizes. Although significant correlations of both IRE5 and RIE were observed against CBA and IPA, the correlation with CBA was in the opposite direction to that predicted by the hypotheses. Variations of IDE were not significantly correlated with either angle. Correlations of IPA with IRE5 and RIE appeared to support the hypotheses. However, partial coefficients computed for all significant correlations indicated that changes to the fetal non-hominoid primate cranial base were more closely related to increases in body size than the hypothesized influence of relative brain enlargement. These findings were discussed together with those from a previous study of modern human fetuses.  相似文献   

8.
Among mammals, the members of some Orders have relatively large brains. Alternative explanations for this have emphasized either social or ecological selection pressures favouring greater information-processing capacities, including large group size, greater foraging efficiency, higher innovation rates, better invasion success and complex problem solving. However, the focal taxa for these analyses (primates, carnivores and birds) often show both varied ecological competence and social complexity. Here, we focus on the specific relationship between social complexity and brain size in ungulates, a group with relatively simple patterns of resource use, but extremely varied social behaviours. The statistical approach we used, phylogenetic generalized least squares, showed that relative brain size was independently associated with sociality and social complexity as well as with habitat use, while relative neocortex size is associated with social but not ecological factors. A simple index of sociality was a better predictor of both total brain and neocortex size than group size, which may indicate that the cognitive demands of sociality depend on the nature of social relationships as well as the total number of individuals in a group.  相似文献   

9.
Culturally transmitted traits are observed in a wide array of animal species, yet we understand little about the costs of the behavioural patterns that underlie culture, such as innovation and social learning. We propose that infectious diseases are a significant cost associated with cultural transmission. We investigated two hypotheses that may explain such a connection: that social learning and exploratory behaviours (specifically, innovation and extractive foraging) either compensate for existing infection or increase exposure to infectious agents. We used Bayesian comparative methods, controlling for sampling effort, body mass, group size, geographical range size, terrestriality, latitude and phylogenetic uncertainty. Across 127 primate species, we found a positive association between pathogen richness and rates of innovation, extractive foraging and social learning. This relationship was driven by two independent phenomena: socially contagious diseases were positively associated with rates of social learning, and environmentally transmitted diseases were positively associated with rates of exploration. Because higher pathogen burdens can contribute to morbidity and mortality, we propose that parasitism is a significant cost associated with the behavioural patterns that underpin culture, and that increased pathogen exposure is likely to have played an important role in the evolution of culture in both non-human primates and humans.  相似文献   

10.
Extensive variation in life-history patterns is documented across primate species. Variables included are gestation length, neonatal weight, litter size, age at weaning, age at sexual maturity, age at first breeding, longevity, and length of the estrous cycle. Species within genera and genera within subfamilies tend to be very similar on most measures, and about 85% of the variation remains when the subfamily is used as the level for statistical analysis. Variation in most life-history measures is highly correlated with variation in body size, and differences in body size are associated with differences in behavior and ecology. Allometric relationships between life-history variables and adult body weight are described; subfamily deviations from best-fit lines do not reveal strong correlations with behavior or ecology. However, for their body size, some subfamilies show consistently fast development across life-history stages while others are characteristically slow. One exception to the tendency for relative values to be positively correlated is brain growth: those primates with relatively large brains at birth have relatively less postnatal brain growth. Humans are a notable exception, with large brains at birth and high postnatal brain growth.  相似文献   

11.
We present the most extensive examination to date of proposed correlates of species richness. We use rigorous phylogenetic comparative techniques, data for 1,692 mammal species in four clades, and multivariate statistics to test four hypotheses about species richness and compare the evidence for each. Overall, we find strong support for the life-history model of diversification. Species richness is significantly correlated with shorter gestation period in the carnivores and large litter size in marsupials. These traits and short interbirth intervals are also associated with species richness in a pooled analysis of all four clades. Additionally, we find some support for the abundance hypotheses in different clades of mammals: abundance correlates positively with species richness in primates but negatively in microchiropterans. Our analyses provide no evidence that mammalian species richness is associated with body size or degree of sexual dimorphism.  相似文献   

12.
Genome size (C value, the haploid DNA content of the nucleus) varies widely among eukaryotes, increasing through duplication or insertion of transposable elements and decreasing through deletions. Here, we investigate relationships between genome size and life-history attributes potentially related to fitness, including body mass, brain mass, gestation time, age at sexual maturity, and longevity, in 42 species of primates. Using multivariate and phylogenetically informed analyses, we show that genome size is unrelated to any of these traits. Genome size exhibits little variation within primates and its evolution does not appear to be correlated with changes in life-history traits. This further indicates that the phenotypic consequences of variation in genome size are dependent on the particular biology of the group in question.  相似文献   

13.
Recent comparative evidence suggests that anthropoid primates are the only vertebrates to exhibit a quantitative relationship between relative brain size and social group size. In this paper, I attempt to explain this pattern with regard to facial expressivity and social bonding. I hypothesize that facial motor control increases as a secondary consequence of neocortical expansion owing to cortical innervation of the facial motor nucleus. This is supported by new analyses demonstrating correlated evolution between relative neocortex size and relative facial nucleus size. I also hypothesize that increased facial motor control correlates with enhanced emotional expressivity, which provides the opportunity for individuals to better gauge the trustworthiness of group members. This is supported by previous evidence from human psychology, as well as new analyses demonstrating a positive relationship between allogrooming and facial nucleus volume. I suggest new approaches to the study of primate facial expressivity in light of these hypotheses.  相似文献   

14.
Our understanding of the evolutionary history of primates is undergoing continual revision due to ongoing genome sequencing efforts. Bolstered by growing fossil evidence, these data have led to increased acceptance of once controversial hypotheses regarding phylogenetic relationships, hybridization and introgression, and the biogeographical history of primate groups. Among these findings is a pattern of recent introgression between species within all major primate groups examined to date, though little is known about introgression deeper in time. To address this and other phylogenetic questions, here, we present new reference genome assemblies for 3 Old World monkey (OWM) species: Colobus angolensis ssp. palliatus (the black and white colobus), Macaca nemestrina (southern pig-tailed macaque), and Mandrillus leucophaeus (the drill). We combine these data with 23 additional primate genomes to estimate both the species tree and individual gene trees using thousands of loci. While our species tree is largely consistent with previous phylogenetic hypotheses, the gene trees reveal high levels of genealogical discordance associated with multiple primate radiations. We use strongly asymmetric patterns of gene tree discordance around specific branches to identify multiple instances of introgression between ancestral primate lineages. In addition, we exploit recent fossil evidence to perform fossil-calibrated molecular dating analyses across the tree. Taken together, our genome-wide data help to resolve multiple contentious sets of relationships among primates, while also providing insight into the biological processes and technical artifacts that led to the disagreements in the first place.

Combining three newly sequenced primate genomes with other published genomes, this study adapts a little-known method for detecting ancient introgression to genome-scale data, revealing multiple previously unknown examples of hybridization between primate species.  相似文献   

15.
In order to understand fully the generally high level of encephalization observed in living primates, we must determine why early primates exhibited moderately large relative brain sizes compared to their early Tertiary contemporaries. The relatively high degree of encephalization in early primates may be related at least in part to the fact that they were highly unusualamong mammals in combining a small body size with a strongly precocial reporductive strategy. Other small, precocial mammals also exhibit moderately high levels of encephalization; but primates appear to have been truly uniquein being the only such small-sized and highly precocial group to give rise to extensive radiations of larger descendants. This is a key element in understanding primate brain evolution, because the initial “head start” of the early primates was translated up to larger sizes in descendants. The possible relationships among encephalization, precociality, small size, and arboreality are discussed, particularly in light of recent debates concerning the validity of the superorder Archonta. This work emphasizes that we need to consider relative brain size as but one element in a complex synergistic network of morphological and life-history features.  相似文献   

16.
The social intelligence hypothesis suggests that living in large social networks was the primary selective pressure for the evolution of complex cognition in primates. This hypothesis is supported by comparative studies demonstrating a positive relationship between social group size and relative brain size across primates. However, the relationship between brain size and cognition remains equivocal. Moreover, there have been no experimental studies directly testing the association between group size and cognition across primates. We tested the social intelligence hypothesis by comparing 6 primate species (total N = 96) characterized by different group sizes on two cognitive tasks. Here, we show that a species’ typical social group size predicts performance on cognitive measures of social cognition, but not a nonsocial measure of inhibitory control. We also show that a species’ mean brain size (in absolute or relative terms) does not predict performance on either task in these species. These data provide evidence for a relationship between group size and social cognition in primates, and reveal the potential for cognitive evolution without concomitant changes in brain size. Furthermore our results underscore the need for more empirical studies of animal cognition, which have the power to reveal species differences in cognition not detectable by proxy variables, such as brain size.  相似文献   

17.
The social brain hypothesis proposes that haplorhine primates have evolved relatively large brains for their body size primarily as an adaptation for living in complex social groups. Studies that support this hypothesis have shown a strong relationship between relative brain size and group size in these taxa. Recent reports suggest that this pattern is unique to haplorhine primates; many nonprimate taxa do not show a relationship between group size and relative brain size. Rather, pairbonded social monogamy appears to be a better predictor of a large relative brain size in many nonprimate taxa. It has been suggested that haplorhine primates may have expanded the pairbonded relationship beyond simple dyads towards the evolution of complex social groups. We examined the relationship between group size, pairbonding, and relative brain size in a sample of 19 lemurs; strepsirrhine primates that last share a common ancestor with monkeys and apes approximately 75 Ma. First, we evaluated the social brain hypothesis, which predicts that species with larger social groups will have relatively larger brains. Secondly, we tested the pairbonded hypothesis, which predicts that species with a pairbonded social organization will have relatively larger brains than non-pairbonded species. We found no relationship between group size or pairbonding and relative brain size in lemurs. We conducted two further analyses to test for possible relationships between two nonsocial variables, activity pattern and diet, and relative brain size. Both diet and activity pattern are significantly associated with relative brain size in our sample. Specifically, frugivorous species have relatively larger brains than folivorous species, and cathemeral species have relatively larger brains than diurnal, but not nocturnal species. These findings highlight meaningful differences between Malagasy strepsirrhines and haplorhines, and between Malagasy strepsirrhines and nonprimate taxa, regarding the social and ecological factors associated with increases in relative brain size. The results suggest that factors such as foraging complexity and flexibility of activity patterns may have driven selection for increases in brain size in lemurs.  相似文献   

18.
This study investigates brain size ontogeny in a sample of seven anthropoid primate species (including humans) in order to evaluate longstanding ideas about the relations between brain size, brain ontogeny, life history, and cognition. First, this analysis tests the hypothesis that primate brain growth patterns vary across species. Second, the relations between the duration of the brain growth period and the duration of the pre-adult period are evaluated. Brain growth data, derived from a number of sources, are analyzed through parametric and nonparametric regressions. The results indicate that primates are characterized by significant variation in patterns of brain growth. In addition, the degree to which brain growth is allocated to either the pre- or the postnatal period varies substantially. Analyses of phylogenetically adjusted data show no correlation between the lengths of the brain growth period and the juvenile period, but there are correlations with other life-history variables. These results are explained in terms of maternal metabolic adaptations. Specifically, primates appear to present at least two major metabolic adaptations. In the first, brain growth occurs mainly during the prenatal period, reflecting heavy maternal investment. In the second, brain growth occupies large portions of the postnatal period. These differing patterns have important implications for maturation age, necessitating late maternal maturation in the first case and enabling relatively early maternal maturation in the second. Overall, these adaptations represent components of distinctive life-history adaptations, with potentially important implications for the evolution of primate cognition.  相似文献   

19.
The anatomical basis and adaptive function of the expansion in primate brain size have long been studied; however, we are only beginning to understand the genetic basis of these evolutionary changes. Genes linked to human primary microcephaly have received much attention as they have accelerated evolutionary rates along lineages leading to humans. However, these studies focus narrowly on apes, and the link between microcephaly gene evolution and brain evolution is disputed. We analyzed the molecular evolution of four genes associated with microcephaly (ASPM, CDK5RAP2, CENPJ, MCPH1) across 21 species representing all major clades of anthropoid primates. Contrary to prevailing assumptions, positive selection was not limited to or intensified along the lineage leading to humans. In fact we show that all four loci were subject to positive selection across the anthropoid primate phylogeny. We developed clearly defined hypotheses to explicitly test if selection on these loci was associated with the evolution of brain size. We found positive relationships between both CDK5RAP2 and ASPM and neonatal brain mass and somewhat weaker relationships between these genes and adult brain size. In contrast, there is no evidence linking CENPJ and MCPH1 to brain size evolution. The stronger association of ASPM and CDK5RAP2 evolution with neonatal brain size than with adult brain size is consistent with these loci having a direct effect on prenatal neuronal proliferation. These results suggest that primate brain size may have at least a partially conserved genetic basis. Our results contradict a previous study that linked adaptive evolution of ASPM to changes in relative cortex size; however, our analysis indicates that this conclusion is not robust. Our finding that the coding regions of two widely expressed loci has experienced pervasive positive selection in relation to a complex, quantitative developmental phenotype provides a notable counterexample to the commonly asserted hypothesis that cis-regulatory regions play a dominant role in phenotypic evolution.  相似文献   

20.
Mammals living in more complex social groups typically have large brains for their body size and many researchers have proposed that the primary driver of the increase in brain size through primate and hominin evolution was the selection pressures associated with sociality. Many mammals, and especially primates, use flexible signals that show a high degree of voluntary control and these signals may play an important role in forming and maintaining social relationships between group members. However, the specific role that cognitive skills play in this complex communication, and how in turn this relates to sociality, is still unclear. The hypothesis for the communicative roots of complex sociality and cognition posits that cognitive demands behind the communication needed to form and maintain bonded social relationships in complex social settings drives the link between brain size and sociality. We review the evidence in support of this hypothesis and why key features of cognitively complex communication such as intentionality and referentiality should be more effective in forming and maintaining bonded relationships as compared with less cognitively complex communication. Exploring the link between cognition, communication and sociality provides insights into how increasing flexibility in communication can facilitate the emergence of social systems characterised by bonded social relationships, such as those found in non‐human primates and humans. To move the field forward and carry out both within‐ and among‐species comparisons, we advocate the use of social network analysis, which provides a novel way to describe and compare social structure. Using this approach can lead to a new, systematic way of examining social and communicative complexity across species, something that is lacking in current comparative studies of social structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号