首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y Mimaki  Y Sashida 《Phytochemistry》1991,30(3):937-940
Phytochemical examination of the fresh bulbs of Lilium speciosum forma vestale has led to the isolation of a new phenolic glycoside and a new steroidal saponin. The respective structures of the new compounds have been shown by spectral analysis to be 6'-O-feruloylsucrose and (25R,26R)-26-methoxyspirost-5-en-3 beta-o1 3-O-alpha-L-rhamnopyranosyl-(1----2)-beta-D-glucopyranoside. Several known phenolic glycosides and saponins have also been isolated and identified.  相似文献   

2.
Steroidal glycosides from the bulbs of Lilium dauricum.   总被引:2,自引:0,他引:2  
The bulbs of Lilium dauricum yielded 11 compounds, including six new steroidal glycosides. The structures have been determined by spectral analysis and hydrolysis to be (25R,26R)-26-methoxyspirost-5-en-3 beta-ol 3-O-alpha-L-rhamnopyranosyl-(1----2)-O-[alpha-L-arabinopyranosyl-( 1----3)]- beta-D-glucopyranoside, (25R,26R)-26-methoxyspirost-5-en-3 beta-ol 3-O-alpha-L-rhamnopyranosyl-(1----2)-O-[beta-D-glucopyranosyl-(1----4)]- beta-D-glucopyranoside, (25R)-spirost-5-en-3 beta-ol (diosgenin) 3-O-alpha-L-rhamnopyranosyl-(1----2)-O-[alpha-L-arabinopyranosyl- (1----3)]-beta-D-glucopyranoside, (25R)-3 beta,17 alpha-dihydroxy-5 alpha-spirostan-6-one 3-O-alpha-L-rhamnopyranosyl-(1----2)-beta-D-glucopyranoside, (25R)-3 beta, 17 alpha-dihydroxy-5 alpha-spirostan-6-one 3-O-alpha-L-rhamnopyranosyl-(1----2)-O-[alpha-L- arabinopyranosyl-(1----3)]-beta-D-glucopyranoside and (20R,22R)-3 beta,20,22-trihydroxy-5 alpha-cholestan-6-one (tenuifoliol) 3-O-alpha-L-rhamnopyranosyl-(1----2)-beta-D-glucopyranoside. The absolute configurations of C-20 and C-22 of tenuifoliol were further confirmed by detailed analysis of the NOE difference spectrum of the corresponding isopropylidene derivative. Several known compounds were also isolated and identified.  相似文献   

3.
Sequential tritylation, benzoylation, and detritylation of p-nitrophenyl beta-D-galactopyranoside gave p-nitrophenyl 2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (2). Reaction of 2 with 2,3,4,6-tetra-O-benzoyl-alpha-D-galactopyranosyl bromide gave p-nitrophenyl O-(2,3,4,6-tetra-O-benzoyl-beta-D-galactopyranosyl)-(1----6) -2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (4) in 94% yield. Deprotection with sodium methoxide then gave the crystalline p-nitrophenyl O-(beta-D-galactopyranosyl)-(1----6)-beta-D-galactopyranoside (5). Condensation of 2 with 2,3,4-tri-O-benzoyl-6-O-bromoacetyl-alpha-D-galactopyranosyl bromide (3) readily yielded the protected disaccharide p-nitrophenyl O-(2,3,4-tri-O-benzoyl-6-O-bromoacetyl-beta-D-galactopyranosyl)-(1----6) -2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (6) from which the bromoacetyl groups could be selectively removed. Condensation of the resulting material with tetra-O-benzoyl-alpha-D-galactopyranosyl bromide then yielded p-nitrophenyl O-(2,3,4,6-tetra-O-benzoyl-beta-D-galactopyranosyl)-(1----6)-O-(2,3,4 -tri-O-benzoyl-beta-D-galactopyranosyl)-(1----6)-2,3,4-tri-O-benzoyl-bet a-D -galactopyranoside, (8), which was converted into the crystalline trisaccharide p-nitrophenyl O-(beta-D-galactopyranosyl)-(1----6)-O-beta-D-galactopyranosyl)-(1----6) -beta -D-galactopyranoside (9) by treatment with sodium methoxide. Preliminary experiments on the interaction of p-(bromoacetamido)phenyl and p-isothiocyanatophenyl glycoside derivatives of some of these galacto-saccharides with monoclonal anti-(1----6)-beta-D-galactopyranan antibodies have been conducted.  相似文献   

4.
3-Amino-polydeoxy disaccharides have been prepared by condensation of a glycal with methyl 2,3,6-trideoxy-alpha-L-erythro-(or threo)-hex-2-enopyranoside in the presence of N-iodosuccinimide. After acid hydrolysis of the glycoside, 1,4-addition of hydrazoic acid to the corresponding hex-2-enopyranose led to 3-azido-disaccharides which were acetylated. Reduction of the azido group gave 2,2'-dideoxy- or 2,2'-dideoxy-2'-iodo compounds. Condensation of O-(3,4-di-O-acetyl-2,6-dideoxy-2-iodo-alpha-L-manno-hexopy-rano syl)-(1----4)-1- O-acetyl-2,3,6-trideoxy-3-trifluoroacetamido-alpha-L-arabino-he xopyranose with daunomycinone, followed by 3',4'-O-deacetylation produced the new anthracycline, 7-O-[O-(2,6-dideoxy-2-iodo-alpha-L-manno-hexopyranosyl)-(1----4)-2,3,6- trideoxy-3-trifluoroacetamido-alpha-L-arabino-hexopyranosyl]-da uno-mycinone.  相似文献   

5.
The presence of N-acetyl-beta-D-glucosaminyltransferases in microsome preparations from human ovarian tissues was investigated with UDP-GlcNAc and several synthetic oligosaccharides as acceptors. The products were identified by paper chromatography and the linkage of the 2-acetamido-2-deoxy-beta-D-glucopyranosyl group incorporated into oligosaccharides was determined by exoglycosidase digestions, 1H-n.m.r. spectroscopy, and methylation analysis. These results showed that ovarian microsome preparations contain both beta-(1----3)- and beta-(1----6)-N-acetyl-D-glucosaminyltransferase activities which might be involved in the synthesis of mucin-type glycoproteins. Substrate competition tests suggested that both UDP-GlcNAc:-Bn glycoside of beta-D-GlcpNAc-(1----6)-alpha-D-GalpNAc [GlcNAc to GalNAc] and -Bn glycoside of beta-D-Galp-(1----3)-[beta-D-GlcNAc-(1----6)]-alpha-D-GalpNAc [GlcNAc to Gal] beta-(1----3)-N-acetyl-D-glucosaminyltransferase activities reside in a single enzyme species.  相似文献   

6.
The structure of an acidic exopolysaccharide of two strains of Pseudomonas marginalis, a bacterium which causes soft rots of various vegetables, has been determined to consist of a repeating unit of: ----4) beta-D-Manp-(1----3)alpha-D-Glcp-(1----4)alpha-L-Rhap-(1-. The glucose is pyruvated at O-4 and O-6 and the mannose is acetylated at either O-2 or O-3.  相似文献   

7.
O-(2-Deoxy-2-sulfamido-6-O-sulfo-alpha-D-glucopyranosyl)-(1----4)- O-(beta-D- glucopyranosyluronic acid)-(1----4)-1,6-anhydro-2-deoxy-2-sulfamido-6-O-sulfo-beta-D-gl ucopyranose pentasodium salt (14) was synthesized as a heparin-related oligosaccharide. The glycosyl acceptor (derived from cellobiose) and a glycosyl donor, 6-O-acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl bromide, were coupled in the presence of mercuric bromide and molecular sieves 4A to afford a 69% yield of fully protected trisaccharide, namely, O-(6-O-acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl)-(1 ----4)- O-(methyl 2,3-di-O-benzyl-beta-D-glucopyranosyluronate)-(1----4)-3-O-acetyl- 1,6-anhydro-2 - azido-2-deoxy-beta-D-glucopyranose (10), which was converted into the partially sulfated trisaccharide 14. Compound 10 also underwent acetolysis to afford the glycosyl acetate, for further elongation of the glycosyl chain.  相似文献   

8.
The oligosaccharide products resulting from treatment of mucin-type glycoproteins with alkali in the presence of the sulfite anion have been investigated. Treatment of fetuin and of tryptic glycopeptides from the human erythrocyte with this reagent resulted in the release of sulfited oligosaccharides identified as N-acetylsulfohexosamine (HexNAcSO3), alpha-NeuAc-(2----6)-HexNAcSO3, and alpha-NeuAc-(2----3)-Gal-(1----3 or 4)-[GlcNAc-(1----6)]-HexNAcSO3. In addition, 2.7 moles of sialic acid were released per mole of alpha-NeuAc-(2----6)-HexNAcSO3 from fetuin. The sulfohexosamine moiety is formed via unsaturated intermediates from a 3-O-substituted 2-acetamido-2-deoxy-D-galactosyl residue at the carbohydrate-peptide linkage site when this residue is not substituted at O-4 by another sugar residue. A reaction mechanism accounting for the release of the sulfited oligosaccharides from a 3-O- and 6-O-substituted hexosamine is proposed in which the oligosaccharide branch attached to O-6 is obtained as a specific fragment terminating in sulfohexosamine.  相似文献   

9.
Calf thyroid microsomes were found to contain an enzyme which catalyzes the transfer of sulfate from 3'-phosphoadenosine 5'-phospho[35S]sulfate (PAPS) to C-3 of terminal galactose residues in beta 1----4 linkage to GlcNAc. This sulfotransferase is believed to be involved in the biosynthesis of the recently described Gal(3-SO4) capping groups present in the N-linked oligosaccharides of thyroglobulin (Spiro, R.G., and Bhoyroo, V. D. (1988) J. Biol. Chem. 263, 14351-14358). Assays with various native and modified glycopeptides indicated that the enzyme acted optimally on complex-type carbohydrate units in which beta-linked Gal has been uncovered by desulfation or brought into a terminal position by removal of sialyl and/or alpha-galactosyl residues. With fetuin asialoglycopeptides as acceptors (Km = 0.1 mM) the transfer of sulfate from PAPS (Km = 6.3 microM) had a pH optimum of approximately 7.0, required Mn2+ ions (10-50 mM) and was markedly stimulated by Triton X-100 (0.1%) and ATP (2 mM). The same enzyme apparently sulfated free N-acetyllactosamine (LacNAc; Km = 0.69 mM) and its ethyl glycoside, indicating that it had no absolute requirement for a peptide recognition site. Studies with a number of disaccharides related to LacNAc provided information relating to the specifying role of the beta 1----4 galactosyl linkage and the configuration at C-2 of the sugar to which it is attached. Hydrazine-nitrous acid-NaBH4 treatment of the 35S-labeled products from sulfotransferase action on asialoglycopeptides as well as on the ethyl glycoside of LacNAc yielded the same disaccharide, Gal(3-SO4) beta 1----4 anhydromannitol, as is obtained from a similar treatment of thyroglobulin. Subcellular distribution studies indicated that the PAPS:galactose 3-O-sulfotransferase is located in the Golgi compartment which is consistent with the late occurrence of the requisite beta-galactosylation step. It is proposed that in certain tissues the ultimate nature of the capping groups attached to glycoproteins containing terminal Gal beta 1----4GlcNAc sequences could be the result of a competition between this 3-O-sulfotransferase and sialyl- and/or alpha-galactosyltransferases.  相似文献   

10.
The biantennary oligosaccharide glycoside beta-D-GlcpNAc-(1----2)-alpha-D- Manp-(1----3)- [beta-D-GlcpNAc-(1----2)-alpha-D-Manp-(1----6)]-beta-D-Manp- OR is a potential substrate for N-acetylglucosaminyltransferases (GlcNAcTs) III-V. The dideoxypentasaccharide glycoside beta-D-GlcpNAc-(1----2)-4- deoxy-alpha-D-lyxo-Hexp-(1----3)- [beta-DGlcpNAc-(1----2)-6-deoxy-alpha-D-Manp-(1----6)] beta-D-Manp-O(CH2)7CH3 (5), where the hydroxyl groups that would be acted on by GlcNAcTs IV and V have been removed, was prepared as a possible specific acceptor for GlcNAcT-III. The strategy involved the chemical synthesis of beta-D-GlcpNAc-(1----2)-4-deoxy-alpha-D-lyxo-Hexp-(1----3)-] 6- deoxy-alpha-D-Manp-(1----6)]-beta-D-Manp-O)CH2)7CH3 and then addition of the last GlcpNAc residue using partially purified GlcNAcT-II from rabbit liver. Preliminary results, using detergent extracts from rat kidney, indicate that 5 is an acceptor for a GlcNAcT whose identity remains to be established.  相似文献   

11.
A phosphonoglycosphingolipid, designated as FGL-IIb, was identified in nerve fibers of Aplysia kurodai by two-dimensional thin layer chromatography (Abe, S., Araki, S., and Satake, M. (1986) Biomed. Res. (Tokyo) 7, 47-51). FGL-IIb was isolated from the nervous system of A. kurodai by Iatrobeads column chromatography using three solvent systems. Pyruvic acid was identified by thin layer chromatography as its 2,4-dinitrophenylhydrazone and established by permethylation studies to be attached as a ketal to O-3 and O-4 of the terminal galactose of the oligosaccharide chain in FGL-IIb. By sugar analysis, permethylation studies, fast atom bombardment-mass spectrometry, and proton magnetic resonance spectrometry, the structure of FGL-IIb was concluded to be [3,4-O-(1-carboxyethylidene)]Gal beta 1----3GalNAc alpha 1----3(Fuc alpha 1----2) (2-aminoethylphosphonyl----6)Gal beta 1----4Glc beta 1----1ceramide. Its major aliphatic components were palmitic acid, octadeca-4-sphingenine and anteisononadeca-4-sphingenine. This is the first report of the occurrence of pyruvylated galactose as a constituent of animal sphingolipid.  相似文献   

12.
Described are total syntheses of O-[sodium (5-acetamido-3,5-dideoxy-D -glycero-alpha-D-galacto-2-nonulopyranosyl)onate]-(2----3)-O -beta-D -galactopyranosyl-(1----1)-(2R,3S,4E)-2-N-tetracosanoylsphingen ine,O-[sodium (5-acetamido-3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosyl+ ++)onate] -(2----3)-O-alpha-D-galactopyranosyl-(1----1)-(2R,3S,4E)-2-N -tetracosanoylsphingenine, O-[sodium (5-acetamido-3,5-dideoxy-D-glycero-beta -D-galacto-2-nonulopyranosyl)onate]-(2----3)-O-beta-D-gal act opyranosyl -(1----1)-(2R,3S,4E)-2-N-tetracosanoylsphingenine, and O-[sodium (5-acetamido-3,5-dideoxy-D-glycero-beta-D-galacto-2-nonulopyranosyl++ +)onate] -(2----3)-O-alpha-D-galactopyranosyl-(1----1)-(2R,3S,4E)-2-N -tetracosanoylsphingenine by using O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D -galacto-2-nonulopyranosyl)onate]-(2----3)-2,3,4,6-tetra-O-a cetyl-D -galactopyrano-syl trichloroacetimidate and O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-beta -D-galacto-2-nonulopyranosyl)onate]-(2----3)-2,4,6-tri-O-ace tyl-D-galactopyranosyl trichloroacetimidate as key glycosyl donors, and (2S,3R,4E)-3 -O-benzoyl-2-N-tetracosanoylsphingenine as a key glycosyl acceptor.  相似文献   

13.
The trisaccharide segment, O-(3,6-di-O-methyl-beta-D-glucopyranosyl)-(1----4)-O-(2,3-di-O-methyl- alpha-L-rhamnopyranosyl)-(1----2)-3-O-methyl-L-rhamnopyranose, of the Mycobacterium leprae-specific phenolic glycolipid I has been synthesized as its 8-(methoxycarbonyl)octyl glycoside and coupled to a carrier protein, to produce a leprosy-specific neoglycoprotein, the so-called natural trisaccharide-octyl-bovine serum albumin (NT-O-BSA). Special features of the synthetic strategy were the use of silver trifluoromethanesulfonate (triflate) to promote glycosylation, resulting in the rhamnobiose in high yield and absolute stereospecificity. The terminal 3,6-di-O-methyl-D-glucopyranosyl group was introduced after O-deallylation of the rhamnobiose. Removal of protecting groups yielded the trisaccharide hapten suitable for coupling to carrier protein. Poly(acrylamide)-gel electrophoresis of the neoglycoprotein demonstrated its purity, and subsequent immunoblotting with a monoclonal antibody directed to the terminal 3,6-di-O-methyl-beta-D-glucopyranosyl epitope of the native glycolipid demonstrated its antigenicity. Comparative serological testing in enzyme-linked immunosorbent assays of NT-O-BSA, the corresponding disaccharide-containing products, and another trisaccharide-containing neoglycoprotein, O-(3,6-di-O-methyl-beta-D-glucopyranosyl)-(1----4)-O-(2,3-di-O- methyl-alpha-L-rhamnopyranosyl)-(1----2)-(3-O-methyl-alpha-L-rhamnopy ran osyl)- (1----4')-oxy-(3-phenylpropanoyl)-BSA (NT-P-BSA) [Fujiwara et al., Agric. Biol. Chem., 51 (1987) 2539-2547] against sera from leprosy patients and control populations showed concordance; the presence of the innermost sugar did not contribute significantly to sensitivity or specificity. The di- and tri-saccharide-containing neoantigens, on account of ready availability and solubility, provide greater flexibility than the native glycolipid for the serodiagnosis of leprosy.  相似文献   

14.
Two key synthons for the title pentasaccharide derivative, methyl O-(methyl 2-O-benzoyl-3-O-benzyl-alpha-L-idopyranosyluronate)-(1----4)-6-O-acetyl- 2-azido - 3-O- benzyl-2-deoxy-beta-D-glucopyranoside and O-(methyl 2,3-di-O-benzyl-4-O- chloroacetyl-beta-D-glucopyranosyluronate)-(1----4)-3,6-di-O-acetyl-2-az ido-2- deoxy-alpha-D- glucopyranosyl bromide, were prepared from a common starting material, cellobiose. They were coupled to give a tetrasaccharide derivative that underwent O-dechloroacetylation to the corresponding glycosyl acceptor. Its condensation with the known 6-O-acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl bromide afforded a 77% yield of suitably protected pentasaccharide, methyl O-(6-O- acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl)-(1----4)- O- (methyl 2,3- di-O-benzyl-beta-D-glucopyranosyluronate)-(1----4)-O-(3,6-di-O-acetyl-2- azido-2 - deoxy-alpha-D-glucopyranosyl)-(1----4)-O-(methyl 2-O-benzoyl-3-O-benzyl-alpha-L- idopyranosyluronate)- (1----4)-6-O-acetyl-2-azido-3-O-benzyl-2-deoxy-beta-D-glucopyranoside. Sequential deprotection and sulfation gave the decasodium salt of methyl O-(2- deoxy-2-sulfamido-6-O-sulfo-alpha-D-glucopyranosyl)-(1----4)-O-(be ta-D- glucopyranosyl-uronic acid)-(1----4)-O-(2-deoxy-2-sulfamido-3,6-di-O-sulfo-alpha-D-gluco pyranosyl)- (1----4)-O-(2-O-sulfo-alpha-L-idopyranosyluronic acid)-(1----4)-2-deoxy-2- sulfamido-6-O- sulfo-beta-D-glucopyranoside (3). In a similar way, the trisaccharide derivative, the hexasodium salt of methyl O-(2-deoxy-2-sulfamido-6-O-sulfo-alpha-D- glucopyranosyl)- (1----4)-O-(beta-D-glucopyranosyluronic acid)-(1----4)-2-deoxy-2-sulfamido-3,6- di-O- sulfo-alpha-D-glucopyranoside (4) was synthesized from methyl O-(6-O-acetyl-2- azido- 3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl)-(1----4)-O-(methyl 2,3-di-O- benzyl-beta- D-glucopyranosyluronate)-3,6-di-O-acetyl-2-azido-2-deoxy-alpha-D- glucopyranoside. The pentasaccharide 3 binds strongly to antithrombin III with an association constant almost equivalent to that of high-affinity heparin, but the trisaccharide 4 appears not to bind.  相似文献   

15.
The binding of the synthetic heptasaccharide,beta-D-Galp-(1----3)-beta-D-Galp-(1----6)-beta-D-Galp-(1 ----6)-beta-D-Galp-(1----6)-beta-D-Galp-1-OCH3 (10) with two monoclonal IgAs of the X24 gene-family has been investigated. The ligand 10 was synthesized by silver triflate mediated coupling of O-(2,3,4,6-tetra-O-benzoyl-beta-D-galactopyranosyl)-(1----3)-O-(2,4,6,-t ri-O-benzoyl-beta-D-galactopyranosyl)-(1----3)-2,4,6-tri-O-benzoyl-alpha -D-galactopyranosyl chloride (5) to the benzoylated, all-beta-(1----6)-linked methyl galactotetraoside 13, having O-6(4) free, followed by debenzoylation of the formed, fully protected methyl galactoheptaoside. The blockwise synthesis of the nucleophile 13 from readily available monosaccharides, and the synthesis of 5 from the corresponding beta-1-O-benzoylated trisaccharide, is also described. Heptasaccharide 10 binds with the (1----6)-beta-D-galactan-specific monoclonal antibodies X-24 and J539 with essentially the same Ka-values (5.4 x 10(5) M-1 and 6.4 x 10(5) M-1, respectively) as does the methyl beta-glycoside of all-beta-(1----6)-linked galactotetraose 14 (5.7 x 10(5) M-1 and 5.9 x 10(5) M-1, respectively). Of the series of homologous oligosaccharides studied previously (di- through a hexa-saccharide), 14 was found to show the highest affinity of interaction with both these immunoglobulins. The beta-(1----3)-linked galactotriose, which forms the bulky terminus of 10, does not appear to bind to these IgA. Thus, the observation that the affinity of 10 is the same as that of 14 confirms that these immunoglobulins bind internal tetrasaccharide sequences of the antigenic (1----6)-beta-D-galactopyranan.  相似文献   

16.
3,4,6-Tri-O-acetyl-D-galactal was transformed into methyl 6-O-acetyl-2-azido-4-O-benzyl-2-deoxy-beta-D-galactopyranoside and its 4-O-acetyl-6-O-benzyl analogue, each of which was glycosylated with activated, O-acetylated derivatives of methyl D-glucopyranosyluronate. The resulting beta-(1----3)-linked disaccharide derivatives were each reductively N-acetylated, hydrogenolysed, O-sulfated, and saponified to afford the disodium salts of methyl 2-acetamido-2-deoxy-3-O-(beta-D-glucopyranosyluronic acid)-4-O-sulfo-beta-D-galactopyranoside and the 6-O-sulfo analogue. D-Galactal was also transformed into activated derivatives of 2-azido-3,6-di-O-benzyl-2-deoxy-D-galactopyranose and their 3,4-di-O-benzyl analogues with various substituents at O-4 and O-6. These glycosyl donors were condensed with 6-O-protected derivatives of methyl 2,3-di-O-benzyl-beta-D-glucopyranoside to give the beta-(1----4)-linked disaccharide derivatives, which were selectively deprotected, then oxidised at C-6 of the gluco unit, reductively N-acetylated, selectively deprotected, O-sulfated at C-4 or C-6 of the galacto unit, and hydrogenolysed to give the disodium salts of methyl 4-O-(2-acetamido-2-deoxy-4-O-sulfo-beta-D-galactopyranosyl)-beta-D- glucopyranosiduronic acid and the 6-O-sulfo analogue.  相似文献   

17.
M Rivière  G Puzo 《Biochemistry》1992,31(14):3575-3580
A serine-containing glycopeptidolipid antigen isolated from Mycobacterium xenopi typified a new class of mycobacterial glycopeptidolipid antigens devoid of the C-mycoside core structure [Rivière, M., & Puzo, G. (1991) J. Biol. Chem. 266, 9057-9063]. The lipopeptide core assigned to C12-Ser-Ser-Phe-alloThr-OCH3 exhibits three potential sites of glycosylation. The carbohydrate parts are composed of 3-O-methyl-6-deoxy-alpha-L-talopyranosyl and 2,3,4-tri-O-methyl-L- rhamnopyranosyl(alpha 1----3)-2-O-lauroyl-L-rhamnopyranosyl(alpha 1----3)-L- rhamnopyranosyl(alpha 1----3)-2,4-di-O-(acetyl, lauroyl)-6-deoxy-alpha-L-glucopyranosyl appendages. In the present work, the carbohydrate attachment sites were successfully determined by ROESY experiments on the native glycopeptidolipid using chloroform as solvent. From the NOE contacts, we unambiguously established that the acylated serine is glycosylated by the 3-O-methyl-6-deoxy-alpha-L-talopyranosyl appendage while the 2,3,4-tri-O-methyl-L-rhamnopyranosyl(alpha 1----3)-2-O- lauroyl-L-rhamnopyranosyl(alpha 1----3)-L-rhamnopyranosyl(alpha 1----3)-2,4-di- O-(acetyl, lauroyl)-6-deoxy-alpha-L-glucopyranosyl appendage is bound to the C-terminal alloThr-OCH3. From these data, the acetyl and lauroyl residues on the C-2 and C-4 of the basal monosaccharide unit were successfully localized. Furthermore, the "L" absolute configuration for the serines and the phenylalanine residues and the "D" configuration for the allothreonine were established. The primary structure of this novel type of mycobacterial antigen, a serine-containing glycopeptidolipid, has now been fully established.  相似文献   

18.
Extracellular signals produced by Rhizobium meliloti are able to induce root hair deformations and nodule organogenesis on alfalfa. The production of these signals is controlled by bacterial nod genes. To enable their isolation in significant amounts, an overproducting strain was constructed. These Nod factors were first extracted by butanol from the culture medium and further purified by reverse-phase high performance liquid chromatography, ion-exchange, and Sephadex LH-20 chromatographies. The structure of the major signal, called NodRm-1, was determined by mass spectrometry, nuclear magnetic resonance, 35S labeling, chemical analysis, and enzymatic degradation, and was shown to be a sulfated and acylated tetramer of glucosamine namely, beta-D-GlcpN(2,9-hexadecadie-noyl) - (1----4) - beta - D - Glc p Nac - (1----4) - beta - D - Glc p NAc - (1----4) - D - GlcpNAc-6-SO3H. Another Nod factor (called Ac-NodRm-1) was co-purified and identified as NodRm-1 acetylated on the C-6 of the nonreducing end sugar. NodRm-1 elicits root hair deformation specifically on alfalfa at a concentration less than 10(-10) M but has no effect on vetch (a heterologous host plant).  相似文献   

19.
O-(alpha-D-Mannopyranosyl)-(1----2)-O-(alpha-D-mannopyranosyl)-(1----3)- O- [(alpha-D-mannopyranosyl)-(1----2)-O-(alpha-D-mannopyranosyl)-(1----6)]- O- (alpha-D-mannopyranosyl)-(1----6)-O-(beta-D-mannopyranosyl)-(1----4)-O-( 2- acetamido-2-deoxy-beta-D-glucopyranosyl)-(1----4)-2-acetamido-2-deoxy- glucopyranose, an octasaccharide fragment of high-mannose type glycan of glycoproteins, was synthesized. Crucial glycosylation of trisaccharide intermediate, benzyl O-(2,4-di-O-benzyl-beta-D-mannopyranosyl)-(1----4)-O-(2-acetamido-3,6-di -O- benzyl-2-deoxy-beta-D-glucopyranosyl)-(1----4)-2-acetamido-3,6-di-O-benz yl-2- deoxy-beta-D-glucopyranoside, was successful only with a di-O-acetyltetradeca-O-benzyl-D-mannopentaosyl chloride. The use of the corresponding hexadeca-O-acetyl-D-mannopentaosyl bromide did not give the desired product.  相似文献   

20.
Y Mimaki  Y Sashida  K Kawashima 《Phytochemistry》1991,30(11):3721-3727
Six new steroidal saponins have been isolated from the fresh bulbs of Camassia cusickii. Their structures were determined by spectroscopic analysis and some chemical transformations to be (25R)-5 alpha-spirostan-3 beta,6 alpha-diol (chlorogenin) 6-O-beta-D-glucopyranoside, chlorogenin 6-O-beta-D-glucopyranosyl-(1----2)-beta-D-glucopyranoside, chlorogenin 6-O-beta-D-glucopyranosyl-(1----3)-beta-D-glucopyranoside, chlorogenin 6-O-beta-D-glucopyranosyl-(1----2)-O-[beta-D-glucopyranosyl-(1----3)]-beta- D-glucopyranoside, (25R)-6 alpha-hydroxy-5 alpha-spirostan-3-one 6-O-beta-D-glucopyranosyl- (1----3)-beta-D-glucopyranoside and (25R)-3,3-dimethoxy-5 alpha-spirostan-6 alpha-ol 6-O-beta-D-glucopyranosyl-(1----3)-beta-D-glucopyranoside. The saponins isolated were shown to contribute to the bitter taste of the bulbs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号