首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular and physiological mechanisms behind the maturation and maintenance of N2-fixing nodules during development of symbiosis between rhizobia and legumes still remain unclear, although the early events of symbiosis are relatively well understood. Azorhizobium caulinodans ORS571 is a microsymbiont of the tropical legume Sesbania rostrata, forming N2-fixing nodules not only on the roots but also on the stems. In this study, 10,080 transposon-inserted mutants of A. caulinodans ORS571 were individually inoculated onto the stems of S. rostrata, and those mutants that induced ineffective stem nodules, as displayed by halted development at various stages, were selected. From repeated observations on stem nodulation, 108 Tn5 mutants were selected and categorized into seven nodulation types based on size and N2 fixation activity. Tn5 insertions of some mutants were found in the well-known nodulation, nitrogen fixation, and symbiosis-related genes, such as nod, nif, and fix, respectively, lipopolysaccharide synthesis-related genes, C4 metabolism-related genes, and so on. However, other genes have not been reported to have roles in legume-rhizobium symbiosis. The list of newly identified symbiosis-related genes will present clues to aid in understanding the maturation and maintenance mechanisms of nodules.  相似文献   

2.
3.
Summary Azorhizobium caulinodans strain ORS571 induces nitrogen-fixing nodules on roots and stem-located root primordia of Sesbania rostrata. Two essential Nod loci have been previously identified in the bacterial genome, one of which (Nod locus 1) shows weak homology with the common nodC gene of Rhizobium mehloti. Here we present the nucleotide sequence of this region and show that it contains three contiguous open reading frames (ORFA, ORFB and ORFC) that are related to the nodABC genes of Rhizobium and Bradyrhizobium species. ORFC is followed by a fourth (ORF4) and probably a fifth (ORF5) open reading frame. ORF4 may be analogous to the nod[ gene of R. leguminosarum, whereas ORF5 could be similar to the rhizobial nodF genes. Coordinated expression of this set of five genes seems likely from the sequence organization. There is no typical nod promoter consensus sequence (nod box) in the region upstream of the first gene (ORFA) and there is no nodD-like gene. LacZ fusions constructed with ORFA, ORFB, ORFC, and ORF4 showed inducible -galactosidase expression in the presence of S. rostrata seedlings as well as around stem-located root primordia. Among a series of phenolic compounds tested, the flavanone naringenin was the most efficient inducer of the expression of this ORS571 nod gene cluster.  相似文献   

4.
A few legume species possess the ability to form N2-fixing nodules on stems as well as on roots. Little is known of the functional characteristics of stem nodules, or to what extent they differ from root nodules. Stem and root nodules of greenhouse-grown plants of Aeschynomene scabra (inoculated with the photosynthetic rhizobial strain BTAi 1) and Sesbania rostrata (inoculated with Azorhizobium caulinodans strain BTSr 3) were examined for assimilation of 14CO2 in the light and dark, soluble carbohydrate and starch contents, acetylene reduction activity, relative efficiency of nitrogenase in terms of uptake-hydrogenase activity, glutamine synthetase and glutamate synthase, and reduced N and ureide contents. In general, stem nodules possessed higher enzyme activities and metabolite contents than did root nodules, suggesting that they fix N2 with greater energy efficiency. This greater efficiency correlated with photosynthesis in the cortex of stem nodules. Differences in enzyme activities and metabolite contents between the stem nodules on A. scabra and those on S. rostrata probably result either from legume-species characteristics or from the photosynthetic capability of strain BTAi 1.  相似文献   

5.
In the symbiotic interaction with rhizobia, legumes develop nodules in which nitrogen fixation takes place. Upon submersion, most temperate legumes are incapable of nodulation, but tropical legumes that grow in waterlogged soils have acquired water stress tolerance for growth and nodulation. One well-studied model plant, the tropical, semi-aquatic Sesbania rostrata, develops stem-located adventitious root primordia that grow out into adventitious roots upon submergence and develop into stem nodules after inoculation with the microsymbiont, Azorhizobium caulinodans. Sesbania rostrata also has a nodulated underground root system. On well-aerated roots, nodules form via root hair curling infection in the zone, just above the root tip, where root hairs develop; on hydroponic roots, an alternative process is used, recruiting a cortical intercellular invasion program at the lateral root bases that skips the epidermal responses. This intercellular cortical invasion entails infection pocket formation, a process that involves cell death features and reactive oxygen species. The plant hormones ethylene and gibberellin are the major signals that act downstream from the bacterial nodulation factors in the nodulation and invasion program. Both hormones block root hair curling infection, but cooperate to stimulate lateral root base invasion and play a role in infection thread formation, meristem establishment, and differentiation of meristem descendants.  相似文献   

6.
Outer-membrane characteristics may determine the survivability of rhizobia under diverse abiotic and biotic stresses. Therefore, the role of lipopolysaccharides (LPS) and membrane proteins of two stem-nodulating bacteria of Sesbania rostrata (Azorhizobium caulinodans ORS571 and Rhizobium sp. WE7) in determining tolerance towards abiotic and biotic stresses (hydrophobics and phages) was investigated. Outer-membrane characteristics (LPS and membrane–protein profiles) of ORS571, WE7 and thirteen standard strains were distinct. ORS571 and WE7 also showed susceptibility towards morphologically distinct phages, i.e., ACSR16 (short-tailed) and WESR29 (long-tailed), respectively. ORS571 and WE7 were tolerant to hydrophobic compounds (triton X-100, rifampicin, crystal violet and deoxycholate). To ascertain the role of outer membrane characteristics in stress tolerance, phage-resistant transconjugant mutants of ORS571 (ORS571-M8 and ORS571-M20) and WE7 (WE7-M9) were developed. LPS- and membrane–protein profiles of mutants differed from that of respective wild types (ORS571 and WE7). In in vitro assay, phages got adsorbed onto purified LPS-membrane protein fractions of wild types. Phages did not adsorb onto membrane fraction of mutants and standard strains. Mutant with reduced expression of LPS (ORS571-M20 and WE7-M9) showed reduced tolerance towards hydrophobics. However, the tolerance was unaffected in mutant (ORS571-M8) where expression of LPS was not reduced but pattern was different. The tolerance level of mutants towards hydrophobics varied with the expression of LPS, whereas the specificity towards phages is correlated with the specific LPS pattern.  相似文献   

7.
Summary The fast growing strain, Azorhizobium caulinodans ORS571, isolated from stem nodules of the tropical legume Sesbania rostrata, can grow in the free-living state at the expense of molecular nitrogen. Five point mutants impaired in nitrogen fixation in the free-living state have been complemented by a plasmid containing the cloned fix-ABC region of strain ORS571. Genetic analysis of the mutants showed that one was impaired in fixC, one in fixA and the three others in a new gene, located upstream from fixA and designated nifO. Site-directed Tn5 mutagenesis was performed to obtain Tn5 insertions in fixB and fixC. The four genes are required for nitrogen fixation both in the free-living state and under symbiotic conditions. The nucleotide sequence of nifO was established. The gene is transcribed independently of fixA and does not correspond to fixX, recently identified in Rhizobium meliloti and R. leguminosarum. Biochemical analysis of the five point mutants showed that they synthesized normal amounts of nitrogenase components. It is unlikely that fixA, fixC and nifO are involved in electron transport to nitrogenase. FixC could be required for the formation of a functional nitrogenase component 2.  相似文献   

8.
姜南  刘卫  李岩  解志红 《微生物学报》2016,56(8):1256-1265
[Objective] Azorhizobium caulinodans ORS571 can fix nitrogen not only as a free-living organism and an associative-symbiotic bacterium by colonizing the root surface of non-leguminous plants, but also as a symbiotic bacterium by interacting with leguminous plant Sesbania rostrata.Due to its ability to grow and fix nitrogen under three conditions, A.caulinodans uses sophisticated chemotaxis signal transduction systems to transform environmental cues into corresponding behavioral responses.Chemotaxis appears crucial for the growth of A.caulinodansin complicated environment and the construction of associative relationship with the plant.However, little is known about the chemotactic pathway of A.caulinodans.Thus, our study aimed to compare the chemotaxis-like genes of A.caulinodans with those of well-studied species.[Methods] NCBI protein BLAST was used for searching sequence similarity with default parameter values against the genomes of A.caulinodans.HMMER3, based on Pfam database, was used for comparative analyses of methyl-accepting chemotaxis protein (MCP).[Results] There was a major chemotaxis cluster in A.caulinodans and the CheR methylated MCPs independently of pentapeptide motif.There were 43 MCP homologs containing diverse signal-sensing architectures in A.caulinodans.In addition,cytoplasmic domains of these MCPs were all composed of 38 heptad repeats.[Conclusion] Despite the extremely high homology presented between the chemotactic system of A.caulinodans and those of well-studied species, A.caulinodans shows its own unique characteristics.The classification of these chemotactic pathways by comparative genomics enables us to better understand how A.caulinodansresponds to changes in environment via exquisite signal transductions in chemotaxis system.  相似文献   

9.
The occurrence and distribution of Azorhizobium and Rhizobium strains that induce stem nodulation of Sesbania rostrata were determined in four vegetation zones in Senegal. Based on tests with 16 Rhizobium and 10 Azorhizobium strains nodulating S. rostrata, a method was devised to distinguish among the strains. In all vegetation zones, members of both genera were more abundant in rhizosphere than nonrhizosphere soil under S. rostrata, Cassia obtusifolia, Acacia senegal, and Hystic suaveolens, and Rhizobium was present at higher densities than Azorhizobium. Azorhizobium was more abundant on the leaves and stems than Rhizobium in three of the vegetation zones, and the density of Azorhizobium but not Rhizobium was far greater on the leaves of S. rostrata than the three nonhost species in all four zones. Approximately 90% of the stem nodules and 39–48% of the root nodules on S. rostrata in all four zones were formed by Azorhizobium.  相似文献   

10.
Summary After random Tn5 mutagenesis of the stem-nodulating Sesbania rostrata symbiont strain ORS571, Nif-, Fix- and Nod- mutants were isolated. The Nif- mutants had lost both free-living and symbiotic N2 fixation capacity. The Fix- mutants normally fixed N2 in the free-living state but induced ineffective nodules on S. rostrata. They were defective in functions exclusively required for symbiotic N2 fixation. A further analysis of the Nod- mutants allowed the identification of two nod loci. A Tn5 insertion in nod locus 1 completely abolished both root and stem nodulation capacity. Root hair curling, which is an initial event in S. rostrata root nodulation, was no longer observed. A 400 bp region showing weak homology to the nodC gene of Rhizobium meliloti was located 1.5 kb away from this nod Tn5 insertion. A Tn5 insertion in nod locus 2 caused the loss of stem and root nodulation capacity but root hair curling still occurred. The physical maps of a 20.5 kb DNA region of nod locus 1 and of a 40 kb DNA region of nod locus 2 showed no overlaps. The two nod loci are not closely linked to nif locus 1, containing the structural genes for the nitrogenase complex (Elmerich et al. 1982).  相似文献   

11.
12.
The survival of indigenous and introduced strains of Azorhizobium caulinodans in flooded soil and in the rice rhizosphere, where in situ Sesbania rostrata was incorporated before the rice crop, is reported. The azorhizobia studied were both root and stem nodulating. In a pot experiment, two crop cycles each of inoculated and noninoculated Sesbania-rice were compared with two crop cycles of flooded fallow-rice. In a field experiment, the effect of repeated incorporation of in situ S. rostrata in the Sesbania-rice sequence was studied. Soils in which inoculated S. rostrata was incorporated contained about 3,000 times more azorhizobia than did soils in the flooded fallow treatment and about 50 times more azorhizobia than did soils in the noninoculated Sesbania treatment. Azorhizobial numbers in the inoculated Sesbania treatment declined toward rice harvest but remained much higher than in the flooded fallow-rice treatment. Repeated incorporation of S. rostrata increased the population density of indigenous soil azorhizobia, whereas the population of inoculated strain ORS571 (Strr Spcr) declined to an undetectable level; this finding suggested low competitiveness by the introduced strain. In the incorporated Sesbania treatment, the rice rhizosphere harbored significantly more A. caulinodans and supported higher nitrogenase activity per plant than did the rhizosphere of the flooded fallow-rice treatment. Sterile rice seedlings inoculated with A. caulinodans showed nitrogenase activity comparable to that of seedlings inoculated with Azospirillum lipoferum 34H, a rice root isolate. Rhizobia from Sesbania aculeata, Sesbania sesban, a Trifolium sp., and Vigna unguiculata did not support appreciable nitrogenase activity.  相似文献   

13.
A series of experiments was carried out in an attempt to produce nodulated plants of Sesbania rostrata with qualities more closely resembling those in the wild than has been achieved to date. When groups of five plants were grown in a controlled climate chamber in pipes containing ~12dm3 modified Jensen's medium with 6mol m?3 nitrate, the daily growth in height reached 5 cm and at 30 d the plants were ~40cm high. At this time, the stems were inoculated with Azorhizobium caulinodans ORS 571 and the medium replaced with Jensen's medium without nitrate. In the subsequent 19-d period ~300 nodules (representing >50% of the potential infection sites) developed on each stem. The nodules increased linearly in size over this time to ~15mg. Specific acetylene reduction activity, ARA ((μmol C2H4 mg?1 h?1) rose to 45 between days 5 and 10 after inoculation and plateaued; total ARA rose to ~200 μmol C2H4 plant?1 h?1. Under the conditions described the plants grew vigorously, and reproducibly uniform yields of nodules with high ARA activities were obtained. As outlined, the procedure offers a standard system in which, within a 2-week period after inoculation, individual strains of bacteria can be quantitatively compared in their ability to induce nodulation and N2-fixation. Physiological and biochemical aspects of the nodulated system can be much more readily approached than with plants producing only root nodules. The inhibitory effects of stem nodules induced by wild type and two mutant strains of Azorhizobium on the development and activity of root nodules are described.  相似文献   

14.
Sesbania species can establish symbiotic interactions with rhizobia from two taxonomically distant genera, including the Sesbania rostrata stem-nodulating Azorhizobium sp. and Azorhizobium caulinodans and the newly described Sinorhizobium saheli and Sinorhizobium teranga bv. sesbaniae, isolated from the roots of various Sesbania species. A collection of strains from both groups were analyzed for their symbiotic properties with different Sesbania species. S. saheli and S. teranga bv. sesbaniae strains were found to effectively stem nodulate Sesbania rostrata, showing that stem nodulation is not restricted to Azorhizobium. Sinorhizobia and azorhizobia, however, exhibited clear differences in other aspects of symbiosis. Unlike Azorhizobium, S. teranga bv. sesbaniae and S. saheli did not induce effective stem nodules on plants previously inoculated on the roots, although stem nodulation was arrested at different stages. For Sesbania rostrata root nodulation, Sinorhizobium appeared more sensitive than Azorhizobium to the presence of combined nitrogen. S. saheli and S. teranga bv. sesbaniae were effective symbionts with all Sesbania species tested, while Azorhizobium strains fixed nitrogen only in symbiosis with Sesbania rostrata. In a simple screening test, S. saheli and S. teranga bv. sesbaniae were incapable of asymbiotic nitrogenase activity. Thus, Azorhizobium can easily be distinguished from Sinorhizobium among Sesbania symbionts on the basis of symbiotic and free-living nitrogen fixation. The ability of Azorhizobium to overcome the systemic plant control appears to be a stem adaptation function. This last property, together with its host-specific symbiotic nitrogen fixation, makes Azorhizobium highly specialized for stem nodulation of the aquatic legume Sesbania rostrata.  相似文献   

15.
The interaction between the Brazilian pioneer legume Sesbania virgata and its microsymbiont Azorhizobium doebereinerae leads to the formation of nitrogen‐fixing nodules on roots that grow either in well‐aerated soils or in wetlands. We studied the initiation and development of nodules under these alternative conditions. To this end, light and fluorescence microscopy were used to follow the bacterial colonisation and invasion into the host and, by means of transmission electron microscopy, we could observe the intracellular entry. Under hydroponic conditions, intercellular invasion took place at lateral root bases and mature nodules were round and determinate. However, on roots grown in vermiculite that allows aerated growth, bacteria also entered via root hair invasion and nodules were both of the determinate and indeterminate type. Such versatility in entry and developmental plasticity, as previously described in Sesbania rostrata, enables efficient nodulation in both dry and wet environments and are an important adaptive feature of this group of semi‐tropical plants that grow in temporarily flooded habitats.  相似文献   

16.
Sesbania rostrata developed nitrogen fixing nodules on the stem after spraying the plants with the bacterial culture TCSR 1. The number of stem nodules at 55 days after sowing was about 1200. Plants with stem nodules had a significantly reduced number of root nodules. The biomass of S. rostrata was comparable to the locally well adapted non-stem nodulating species S. aculeata. The %N and total nitrogen content were highest in S. rostrata compared to the other three species studied.  相似文献   

17.
The expression of plant genes specifically induced during rhizobial infection and the early stages of nodule ontogeny (early nodulin genes) and those induced in the mature, nitrogen-fixing nodule (late nodulin genes) is differentially regulated and tissue/cell specific. We have been interested in the signal transduction pathway responsible for symbiotic, temporal and spatial control of expression of an early (Enod2) and a late (Leghemoglobin;lb) nodulin gene from the stem-nodulated legumeSesbania rostrata, and in identifying thecis-acting elements andtrans-acting factors involved in this process (De Bruijn and Schell, 1992). By introducing chimericS. rostrata lb promoter-gus reporter gene fusions into transgenicLotus corniculatus plants, we have been able to show that thelb promoter directs an infected-cell-specific expression pattern inLotus nodules. We have been able to delimit thecis-acting element responsible for nodule-infected-cell-expression to a 78 pb region of thelb promoter (NICE Element) and have analyzed this element in detail by site-specific mutagenesis. We have studied the interaction of the NICE element, and further upstreamcis-acting elements, withtrans-acting factors of both plant- and rhizobial origin. We have obtained evidence for the involvement of rhizobial proteins in infected-cell-specific plant gene expression (Welters et al., 1993). We have purified one of the bacterial binding proteins from theS. rostrata symbiontAzorhizobium caulinodans (AcBBP1), and cloned and mutated the corresponding gene, in order to examine its symbiotic phenotype. We have also found that theS. rostrata Enod2 gene is rapidly induced by physiologically significant concentrations of cytokinins, suggesting the role of cytokinin as a potential secondary signal involved in nodulation (Dehio and De Bruijn, 1992). We are examining whether the observed cytokinin induction, as well as the nodule-specific expression pattern, are modulated by theSrEnod2 promoter.  相似文献   

18.
Bacterial nodulation factors (NFs) are essential signaling molecules for the initiation of a nitrogen-fixing symbiosis in legumes. NFs are perceived by the plant and trigger both local and distant responses, such as curling of root hairs and cortical cell divisions. In addition to their requirement at the start, NFs are produced by bacteria that reside within infection threads. To analyze the role of NFs at later infection stages, several phases of nodulation were studied by detailed light and electron microscopy after coinoculation of adventitious root primordia of Sesbania rostrata with a mixture of Azorhizobium caulinodans mutants ORS571-V44 and ORS571-X15. These mutants are deficient in NF production or surface polysaccharide synthesis, respectively, but they can complement each other, resulting in functional nodules occupied by ORS571-V44. The lack of NFs within the infection threads was confirmed by the absence of expression of an early NF-induced marker, leghemoglobin 6 of S. rostrata. NF production within the infection threads is shown to be necessary for proper infection thread growth and for synchronization of nodule formation with bacterial invasion. However, local production of NFs by bacteria that are taken up by the plant cells at the stage of bacteroid formation is not required for correct symbiosome development.  相似文献   

19.
Summary We have established an in vitro system for the induction and study of nodulation in Pachyrhizus erosus (jicama) via a hairy root-Rhizobium coculture. In vitro-grown P. erosus plantlets were infected with Agrobacterium rhizogenes (ATCC No. 15834) and two hairy root lines were established. Hairy roots were grown in a split-plate system in which compartment I (CI) contained MS medium with nitrogen and different sucrose levels (0–6%), while CII held MS medium without nitrogen and sucrose. Nodule-like structures developed in transformed roots grown in CI with 2–3% surcose, inoculated with Rhizobium sp. and transferred to CII. Nodule-like structures that developed from hairy roots lacked the rigid protective cover observed in nodules from plants grown in soil. Western blot analysis of nodules from hairy roots and untransformed roots (of greenhouse-grown jicama) showed expression of glutamine synthetase leghemoglobin and nodulins. Leghemoglobin was expressed at low levels in hairy root nodules.  相似文献   

20.
Rhizobium sp. SIN-1, a nitrogen-fixing symbiont of Sesbania aculeata and other tropical legumes, carries two copies of nodD, both on a sym plasmid. We have isolated these two nodD genes by screening a genomic library of Rhizobium sp. SIN-1 with a nodD probe from Sinorhizobium meliloti. Nucleotide sequence and the deduced amino acid sequence analysis indicated that the nodD genes of Rhizobium sp. SIN-1 are most closely related to those of R. tropici and Azorhziobium caulinodans. Rhizobium sp. SIN-1 nodD1 complemented a S. meliloti nodD1D2D3 negative mutant for nodulation on alfalfa, but failed to complement a nodD1 mutant of S. fredii USDA191 for soybean nodulation. A hybrid nodD gene, containing the N-terminus of S. fredii USDA191 nodD1 and the C-terminus of Rhizobium sp. SIN-1 nodD1, complemented the nodD1 negative mutant of USDA191 for nodulation on soybean. Received: 17 January 2002 / Accepted: 18 February 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号