首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The recent elucidation of crystal structures for multi-subunit RNA polymerases immediately revealed a mystery: how do nucleotide triphosphate (NTP) substrates reach an active site that is buried deep within the enzyme? The prevailing view is that NTPs enter through an approximately 20A-long secondary channel between the active site and the enzyme surface. Recently, an alternative view has been advocated; namely, NTPs enter the active site pre-bound to the DNA template from the downstream DNA portion of the main channel of the enzyme.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
For the first time a mutation of streptolydigin resistance was localized. It was discovered to be a double substitution, namely Gly544----Asp, Phe545----Ser, in the region where most rif-r mutations are located. One may suppose that this region takes part in the formation of both elongation NTP binding site, blocked by streptolydigin, and RNA chain binding and translocation site that is blocked by rifampicin.  相似文献   

18.
19.
Recent RNA polymerase (RNAP) structures led to a proposed three-step model of nucleoside triphosphate (NTP) binding, discrimination, and incorporation. NTPs are thought to enter through the secondary channel, bind to an E site, rotate into a pre-insertion (PS) site, and ultimately align in the catalytic (A) site. We characterized the kinetics of correct and incorrect incorporation for several Escherichia coli RNAPs with substitutions in the proposed NTP entry pore (secondary channel). Substitutions of the semi-conserved residue betaAsp(675), which is >10A away from these sites, significantly reduce fidelity; however, substitutions of the totally conserved residues betaArg(678) and betaAsp(814) do not significantly alter the correct or incorrect incorporation kinetics, even though the corresponding residues in RNAPII crystal structures appear to be interacting with the NTP phosphate groups and coordinating the second magnesium ion in the active site, respectively. Structural analysis suggests that the lower fidelity of the betaAsp(675) mutants most likely results from reduction of the negative potential of a small pore between the E and PS sites and elimination of several structural interactions around the pore. We suggest a mechanism of nucleotide discrimination that is governed both by rotation of the NTP through this pore and subsequent rearrangement or closure of RNAP to align the NTP in the A site.  相似文献   

20.
Telomerase synthesizes telomeric DNA repeats onto chromosome termini from an intrinsic RNA template. The processive synthesis of DNA repeats relies on a unique, yet poorly understood, mechanism whereby the telomerase RNA template translocates and realigns with the DNA primer after synthesizing each repeat. Here, we provide evidence that binding of the realigned RNA/DNA hybrid by the active site is an essential step for template translocation. Employing a template-free human telomerase system, we demonstrate that the telomerase active site directly binds to RNA/DNA hybrid substrates for DNA polymerization. In telomerase processivity mutants, the template-translocation efficiency correlates with the affinity for the RNA/DNA hybrid substrate. Furthermore, the active site is unoccupied during template translocation as a 5 bp extrinsic RNA/DNA hybrid effectively reduces the processivity of the template-containing telomerase. This suggests that strand separation and template realignment occur outside the active site, preceding the binding of realigned hybrid to the active site. Our results provide new insights into the ancient RNA/DNA hybrid binding ability of telomerase and its role in template translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号