首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have indicated that the Arabidopsis thalianairregular xylem 4 (irx4) mutant is severely lignin-deficient, forming abnormal lignin from aberrant monomers. Studies of lignin structure in dwarfed cinnamoyl CoA reductase (CCR)-downregulated tobacco were also previously reported to incorporate feruloyl tyramine derivatives. The lignin in the Arabidopsis irx4 mutant was re-investigated at 6 weeks and at maturation (9 weeks). Application of (1)H, (13)C, 2D Heteronuclear Multiple Quantum Coherence and 2D Heteronuclear Multiple Bond Coherence spectroscopic analyses to the lignin-enriched isolates from both Arabidopsis wild-type (Ler) and the CCR-irx4 mutant at both developmental stages revealed that only typical guaiacyl/syringyl lignins were formed. For the irx4 mutant, the syringyl content at 6 weeks growth was lower, in accordance with a delayed but coherent program of lignification. At maturation, however, the syringyl/guaiacyl ratio of the irx4 mutant approached that of wild-type. There was no evidence for feruloyl tyramines, or homologues thereof, accumulating as a chemical signature in lignins resulting from CCR mutation. Nor were there any noticeable increases in other phenolic components, such as hydroxycinnamic acids. These findings were further confirmed by application of thioacidolysis, alkaline nitrobenzene oxidation and acetyl bromide analyses. Moreover, in the case of CCR downregulation in tobacco, there were no NMR spectroscopic correlations that demonstrated feruloyl tyramines being incorporated into the lignin biopolymers. This study thus found no evidence that abnormal lignin formation occurs when CCR activity is modulated.  相似文献   

2.
3.
In the Arabidopsis mutant irx3, truncation of the AtCesA7 gene encoding a xylem-specific cellulose synthase results in reduced cellulose synthesis in the affected xylem cells and collapse of mature xylem vessels. Here we describe spectroscopic experiments to determine whether any cellulose, normal or abnormal, remained in the walls of these cells and whether there were consequent effects on other cell-wall polysaccharides. Xylem cell walls from irx3 and its wild-type were prepared by anatomically specific isolation and were examined by solid-state NMR spectroscopy and FTIR microscopy. The affected cell walls of irx3 contained low levels of crystalline cellulose, probably associated with primary cell walls. There was no evidence that crystalline cellulose was replaced by less ordered glucans. From the molecular mobility of xylans and lignin it was deduced that these non-cellulosic polymers were cross-linked together in both irx3 and the wild-type. The disorder previously observed in the spatial pattern of non-cellulosic polymer deposition in the secondary walls of irx3 xylem could not be explained by any alteration in the structure or cross-linking of these polymers and may be attributed directly to the absence of cellulose microfibrils which, in the wild-type, scaffold the organisation of the other polymers into a coherent secondary cell wall.  相似文献   

4.
Recessive mutations at three loci cause the collapse of mature xylem cells in inflorescence stems of Arabidopsis. These irregular xylem (irx) mutations were identified by screening plants from a mutagenized population by microscopic examination of stem sections. The xylem cell defect was associated with an up to eightfold reduction in the total amount of cellulose in mature inflorescence stems. The amounts of cell wall-associated phenolics and polysaccharides were unaffected by the mutations. Examination of the cell walls by using electron microscopy demonstrated that the decreases in cellulose content of irx lines resulted in an alteration of the spatial organization of cell wall material. This suggests that a normal pattern of cellulose deposition may be required for assembly of lignin or polysaccharides. The reduced cellulose content of the stems also resulted in a decrease in stiffness of the stem material. This is consistent with the irregular xylem phenotype and suggests that the walls of irx plants are not resistant to compressive forces. Because lignin was implicated previously as a major factor in resistance to compressive forces, these results suggest either that cellulose has a direct role in providing resistance to compressive forces or that it is required for the development of normal lignin structure. The irx plants had a slight reduction in growth rate and stature but were otherwise normal in appearance. The mutations should be useful in facilitating the identification of factors that control the synthesis and deposition of cellulose and other cell wall components.  相似文献   

5.
A series of transgenic poplars down-regulated for cinnamyl alcohol dehydrogenase (CAD) was analyzed by thioacidolysis. Among the lignin-derived monomers, the indene compounds that were recently shown to originate from sinapaldehyde incorporated into lignins through 8-O-4-cross-coupling, were found to increase as a function of CAD deficiency level. While these syringyl markers were recovered in substantial amounts in the most severely depressed lines, the markers for coniferaldehyde incorporation were recovered in only low amounts. In conjunction with these additional sinapaldehyde units and relative to the control samples, lignins in CAD-deficient poplar lines had less conventional syringyl-units and beta-O-4-bonds and more free phenolic groups. We found that almost half of the polymers in the most deficient lines could be solubilized in alkali and at room temperature. This unusual behavior suggests that lignins in CAD-deficient poplars occur as small, alkali-leachable lignin domains. That mainly sinapaldehyde incorporates into the lignins of CAD-deficient poplars suggests that the recently identified sinapyl alcohol dehydrogenase (SAD), which is structurally distinct from the CAD enzyme targeted herein, does not play any substantial role in constitutive lignification in poplar.  相似文献   

6.
Taylor NG  Laurie S  Turner SR 《The Plant cell》2000,12(12):2529-2540
The irregular xylem 1 (irx1) mutant of Arabidopsis has a severe deficiency in the deposition of cellulose in secondary cell walls, which results in collapsed xylem cells. This mutation has been mapped to a 140-kb region of chromosome 4. A cellulose synthase catalytic subunit was found to be located in this region, and genomic clones containing this gene complemented the irx1 mutation. IRX1 shows homology to a previously described cellulose synthase (IRX3). Analysis of the irx1 and irx3 mutant phenotypes demonstrates that both IRX1 and IRX3 are essential for the production of cellulose in the same cell. Thus, IRX1 and IRX3 define distinct classes of catalytic subunits that are both essential for cellulose synthesis in plants. This finding is supported by coprecipitation of IRX1 with IRX3, suggesting that IRX1 and IRX3 are part of the same complex.  相似文献   

7.
The irregular xylem3 (irx3) mutant of Arabidopsis has a severe deficiency in secondary cell wall cellulose deposition that leads to collapsed xylem cells. The irx3 mutation has been mapped to the top arm of chromosome V near the marker nga106. Expressed sequence tag clone 75G11, which exhibits sequence similarity to cellulose synthase, was found to be tightly linked to irx3, and genomic clones containing the gene corresponding to clone 75G11 complemented the irx3 mutation. Thus, the IRX3 gene encodes a cellulose synthase component that is specifically required for the synthesis of cellulose in the secondary cell wall. The irx3 mutant allele contains a stop codon that truncates the gene product by 168 amino acids, suggesting that this allele is null. Furthermore, in contrast to radial swelling1 (rsw1) plants, irx3 plants show no increase in the accumulation of beta-1,4-linked glucose in the noncrystalline cell wall fraction. IRX3 and RSW1 fall into a distinct subgroup (Csa) of Arabidopsis genes showing homology to bacterial cellulose synthases.  相似文献   

8.
Two methylation steps are necessary for the biosynthesis of monolignols, the lignin precursors. Caffeic acid O-methyltransferase (COMT) O-methylates at the C5 position of the phenolic ring. COMT is responsible for the biosynthesis of sinapyl alcohol, the precursor of syringyl lignin units. The O-methylation at the C3 position of the phenolic ring involves the Caffeoyl CoA 3-O-methyltransferase (CCoAOMT). The CCoAOMT 1 gene (At4g34050) is believed to encode the enzyme responsible for the first O-methylation in Arabidopsis thaliana. A CCoAOMT1 promoter-GUS fusion and immunolocalization experiments revealed that this gene is strongly and exclusively expressed in the vascular tissues of stems and roots. An Arabidopsis T-DNA null mutant named ccomt 1 was identified and characterised. The mutant stems are slightly smaller than wild-type stems in short-day growth conditions and has collapsed xylem elements. The lignin content of the stem is low and the S/G ratio is high mainly due to fewer G units. These results suggest that this O-methyltransferase is involved in G-unit biosynthesis but does not act alone to perform this step in monolignol biosynthesis. To determine which O-methyltransferase assists CCoAOMT 1, a comt 1 ccomt1 double mutant was generated and studied. The development of comt 1 ccomt1 is arrested at the plantlet stage in our growth conditions. Lignins of these plantlets are mainly composed of p-hydroxyphenyl units. Moreover, the double mutant does not synthesize sinapoyl malate, a soluble phenolic. These results suggest that CCoAOMT 1 and COMT 1 act together to methylate the C3 position of the phenolic ring of monolignols in Arabidopsis. In addition, they are both involved in the formation of sinapoyl malate and isorhamnetin.  相似文献   

9.
The secondary cell wall in higher plants consists mainly of cellulose, lignin, and xylan and is the major component of biomass in many species. The Arabidopsis thaliana irregular xylem8 (irx8) mutant is dwarfed and has a significant reduction in secondary cell wall thickness. IRX8 belongs to a subgroup of glycosyltransferase family 8 called the GAUT1-related gene family, whose members include GAUT1, a homogalacturonan galacturonosyltransferase, and GAUT12 (IRX8). Here, we use comparative cell wall analyses to show that the irx8 mutant contains significantly reduced levels of xylan and homogalacturonan. Immunohistochemical analyses confirmed that the level of xylan was significantly reduced in the mutant. Structural fingerprinting of the cell wall polymers further revealed that irx8 is deficient in glucuronoxylan. To explore the biological function of IRX8, we crossed irx8 with irx1 (affecting cellulose synthase 8). The homozygous irx1 irx8 exhibited severely dwarfed phenotypes, suggesting that IRX8 is essential for cell wall integrity during cellulose deficiency. Taken together, the data presented show that IRX8 affects the level of glucuronoxylan and homogalacturonan in higher plants and that IRX8 provides an important link between the xylan polymer and the secondary cell wall matrix and directly affects secondary cell wall integrity.  相似文献   

10.
Xylan, the major hemicellulosic polysaccharide in Arabidopsis secondary cell walls, requires a number of glycosyltransferases (GT) to catalyse formation of the various glycosidic linkages found in the polymer. In this study, we characterized IRX10 and IRX10-like ( IRX10-L ), two highly homologous genes encoding members of the glycosyltransferase family 47 (GT47). T-DNA insertions in IRX10 gave a mild irregular xylem (irx) phenotype consistent with a minor defect in secondary cell-wall synthesis, whereas plants containing mutations in IRX10-L showed no change. However, irx10 irx10-L double mutant plants showed a much more severe irx and whole-plant phenotype, suggesting considerable functional redundancy between these two genes. Detailed biochemical analysis of the irx10 irx10-L double mutant showed a large reduction of xylan in the secondary cell walls, consistent with a specific defect in xylan biosynthesis. Furthermore, the irx10 irx10-L mutant retains the unique oligosaccharide found at the reducing end of Arabidopsis xylan, but shows a severe reduction in β(1,4) xylosyltransferase activity. These characteristics are similar to those of irx9 and irx14 , mutants that are believed to be defective in xylan chain elongation, and suggests that IRX10 and IRX10-L also play a role in elongation of the xylan backbone.  相似文献   

11.
Alkaline nitrobenzene oxidation, ozonation and methoxyl content determinations were applied to decomposing leaf litter of Ginkgo biloba L., Cinnamomum camphora sieb., Zelkova serrata Makino and Firmiana simplex W. F. Wight, respectively, during mulching to investigate the properties and estimate changes in lignin composition and content. Since the Klason lignin residue originated from components highly resistant to degradation by acid, the methoxyl content of Klason residue was used to estimate the lignin content of leaf litter. Quantitative analysis of presumed lignin-derived fragments, by use of alkaline nitrobenzene oxidation and ozonation methods, suggested that the estimated lignin content approximates that of the real lignin content of leaves, which is greatly overestimated by the Klason procedure. The estimated lignin contents ranged from 3.9 to 10.0% while the Klason lignan residue varied from 37.1 to 46.7% in un-mulched leaf litter. The absolute amounts of the measured lignin somewhat decreased during mulching, while the structure of lignin remaining in leaf litters after mulching was considered not to be very different from its original structure.  相似文献   

12.
The irregular xylem 2 (irx2) mutant of Arabidopsis thaliana exhibits a cellulose deficiency in the secondary cell wall, which is brought about by a point mutation in the KORRIGAN (KOR) beta,1-4 endoglucanase (beta,1-4 EGase) gene. Measurement of the total crystalline cellulose in the inflorescence stem indicates that the irx2 mutant contains approximately 30% of the level present in the wild type (WT). Fourier-Transform Infra Red (FTIR) analysis, however, indicates that there is no decrease in cellulose in primary cell walls of the cortical and epidermal cells of the stem. KOR expression is correlated with cellulose synthesis and is highly expressed in cells synthesising a secondary cell wall. Co-precipitation experiments, using either an epitope-tagged form of KOR or IRX3 (AtCesA7), suggest that KOR is not an integral part of the cellulose synthase complex. These data are supported by immunolocalisation of KOR that suggests that KOR does not localise to sites of secondary cell wall deposition in the developing xylem. The defect in irx2 plant is consistent with a role for KOR in the later stages of secondary cell wall formation, suggesting a role in processing of the growing microfibrils or release of the cellulose synthase complex.  相似文献   

13.
A tobacco peroxidase isoenzyme (TP60) was down-regulated in tobacco using an antisense strategy, this affording transformants with lignin reductions of up to 40-50% of wild type (control) plants. Significantly, both guaiacyl and syringyl levels decreased in essentially a linear manner with the reductions in lignin amounts, as determined by both thioacidolysis and nitrobenzene oxidative analyses. These data provisionally suggest that a feedback mechanism is operative in lignifying cells, which prevents build-up of monolignols should oxidative capacity for their subsequent metabolism be reduced. Prior to this study, the only known rate-limiting processes in the monolignol/lignin pathways involved that of Phe supply and the relative activities of cinnamate-4-hydroxylase/p-coumarate-3-hydroxylase, respectively. These transformants thus provide an additional experimental means in which to further dissect and delineate the factors involved in monolignol targeting to precise regions in the cell wall, and of subsequent lignin assembly. Interestingly, the lignin down-regulated tobacco phenotypes displayed no readily observable differences in overall growth and development profiles, although the vascular apparatus was modified.  相似文献   

14.
15.
Matsui N  Chen F  Yasuda S  Fukushima K 《Planta》2000,210(5):831-835
Aglycons derived from 4-O-β-D-glucosides of both caffeyl and 5-hydroxyconiferyl alcohols were incorporated into guaiacyl (G) and syringyl (S) units in the lignin of newly formed xylem of several angiosperms. It is likely that these aglycons enter the cinnamyl alcohol pathway as intermediates in the introduction of methoxyl groups onto aromatic rings, and serve as precursors for the biosynthesis of lignin. The S/G ratio in this pathway was coincident with the ratio in the cell wall lignin of each tree. Our results indicate that the cinnamyl alcohol pathway involves the same mechanisms as the cinnamic acid and cinnamyl CoA pathways and they suggest that this novel pathway might be part of a metabolic grid in the biosynthesis of lignin. Received: 8 September 1999 / Accepted: 4 October 1999  相似文献   

16.
A recent in silico analysis revealed that the Arabidopsis genome has 14 genes annotated as putative 4-coumarate:CoA ligase isoforms or homologues. Of these, 11 were selected for detailed functional analysis in vitro, using all known possible phenylpropanoid pathway intermediates (p-coumaric, caffeic, ferulic, 5-hydroxyferulic and sinapic acids), as well as cinnamic acid. Of the 11 recombinant proteins so obtained, four were catalytically active in vitro, with fairly broad substrate specificities, confirming that the 4CL gene family in Arabidopsis has only four members. This finding is in agreement with our previous phylogenetic analyses, and again illustrates the need for comprehensive characterization of all putative 4CLs, rather than piecemeal analysis of selected gene members. All 11 proteins were expressed with a C-terminal His6-tag and functionally characterized, with one, At4CL1, expressed in native form for kinetic property comparisons. Of the 11 putative His6-tagged 4CLs, isoform At4CL1 best utilized p-coumaric, caffeic, ferulic and 5-hydroxyferulic acids as substrates, whereas At4CL2 readily transformed p-coumaric and caffeic acids into the corresponding CoA esters, while ferulic and 5-hydroxyferulic acids were converted quite poorly. At4CL3 also displayed broad substrate specificity efficiently converting p-coumaric, caffeic and ferulic acids into their CoA esters, whereas 5-hydroxyferulic acid was not as effectively utilized. By contrast, while At4CL5 is the only isoform capable of ligating sinapic acid, the two preferred substrates were 5-hydroxyferulic and caffeic acids. Indeed, both At4CL1 and At4CL5 most effectively utilized 5-hydroxyferulic acid with kenz approximately 10-fold higher than that for At4CL2 and At4CL3. The remaining seven 4CL-like homologues had no measurable catalytic activity (at approximately 100 microg protein concentrations), again bringing into sharp focus both the advantages to, and the limitations of, current database annotations, and the need to unambiguously demonstrate true enzyme function. Lastly, although At4CL5 is able to convert both 5-hydroxyferulic and sinapic acids into the corresponding CoA esters, the physiological significance of the latter observation in vitro was in question, i.e. particularly since other 4CL isoforms can effectively convert 5-hydroxyferulic acid into 5-hydroxyferuloyl CoA. Hence, homozygous lines containing T-DNA or enhancer trap inserts (knockouts) for 4cl5 were selected by screening, with Arabidopsis stem sections from each mutant line subjected to detailed analyses for both lignin monomeric compositions and contents, and sinapate/sinapyl alcohol derivative formation, at different stages of growth and development until maturation. The data so obtained revealed that this "knockout" had no significant effect on either lignin content or monomeric composition, or on the accumulation of sinapate/sinapyl alcohol derivatives. The results from the present study indicate that formation of syringyl lignins and sinapate/sinapyl alcohol derivatives result primarily from methylation of 5-hydroxyferuloyl CoA or derivatives thereof rather than sinapic acid ligation. That is, no specific physiological role for At4CL5 in direct sinapic acid CoA ligation could be identified. How the putative overlapping 4CL metabolic networks are in fact organized in planta at various stages of growth and development will be the subject of future inquiry.  相似文献   

17.
Isolated lignins from alfalfa deficient in caffeic acid 3-O-methyltransferase contained benzodioxanes resulting from the incorporation of the novel monomer, 5-hydroxyconiferyl alcohol. Due to the high level incorporated into the soluble lignin fraction and the use of sensitive NMR instrumentation, unique structural features were revealed. A new type of end-unit, the 5-hydroxyguaiacyl glycerol unit, was identified. It was possible to establish that coniferyl alcohol, sinapyl alcohol, and the novel 5-hydroxyconiferyl alcohol can cross-couple with the 5-hydroxyguaiacyl units that are formed in the lignin, the latter giving rise to extended chains of benzodioxane units. There is also evidence that 5-hydroxyconiferyl alcohol couples with normal (guaiacyl or syringyl) lignin units. Lignin in the alfalfa deficient in caffeoyl CoA 3-O-methyltransferase was structurally similar to the control lignin but the transgenic exhibited a dramatic decrease in lignin content (approximately 20%) and modest increase in cellulose (approximately 10%) reflecting a 30% increase in cellulose:lignin ratio. The compositional changes in both transgenics potentially allow enhanced utilization of alfalfa as a major forage crop by increasing the digestibility of its stem fraction.  相似文献   

18.
p -hydroxyphenyl (H)-, guaiacyl (G)- and syringyl (S) propane, in situ is described. New pathways that regulate the ratio of S to G moieties operating at the stages of cinnamoyl CoA, cinnamyl aldehyde and cinnamyl alcohol are introduced. The roles of monolignol glucoside in the lignification of tree xylem are discussed. The results of gene manupulations that alter the lignin structures are also introduced. Received 15 September 2001/ Accepted in revised form 16 October 2001  相似文献   

19.
20.
Cinnamoyl-CoA reductase 1 (CCR1, gene At1g15950) is the main CCR isoform implied in the constitutive lignification of Arabidopsis thaliana. In this work, we have identified and characterized two new knockout mutants for CCR1. Both have a dwarf phenotype and a delayed senescence. At complete maturity, their inflorescence stems display a 25–35% decreased lignin level, some alterations in lignin structure with a higher frequency of resistant interunit bonds and a higher content in cell wall-bound ferulic esters. Ferulic acid-coniferyl alcohol ether dimers were found for the first time in dicot cell walls and in similar levels in wild-type and mutant plants. The expression of CCR2, a CCR gene usually involved in plant defense, was increased in the mutants and could account for the biosynthesis of lignins in the CCR1-knockout plants. Mutant plantlets have three to four-times less sinapoyl malate (SM) than controls and accumulate some feruloyl malate. The same compositional changes occurred in the rosette leaves of greenhouse-grown plants. By contrast and relative to the control, their stems accumulated unusually high levels of both SM and feruloyl malate as well as more kaempferol glycosides. These findings suggest that, in their hypolignified stems, the mutant plants would avoid the feruloyl-CoA accumulation by its redirection to cell wall-bound ferulate esters, to feruloyl malate and to SM. The formation of feruloyl malate to an extent far exceeding the levels reported so far indicates that ferulic acid is a potential substrate for the enzymes involved in SM biosynthesis and emphasizes the remarkable plasticity of Arabidopsis phenylpropanoid metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号