首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heteroassociation of caffeine (CAF) and the synthetic antibiotic actinocyl-bis(3-dimethylaminopropylamine) (ACT) was studied in aqueous solution by one- and two-dimensional 1H NMR spectroscopy at 500 MHz. The equilibrium reaction constants, thermodynamic parameters (delta H and delta S) of ACT heteroassociation with CAF, the limiting values of proton chemical shifts of their molecules in the heteroassociation complex, and the spatial structure of the ACT-CAF complex were determined from the experimental dependences of proton chemical shifts of the aromatic molecules on concentration and temperature. The parameters of CAF heteroassociation with the phenoxazone antibiotic actinomycin D and its synthetic analogue ACT were comparatively analyzed and conclusions were made on the crucial role of stacking interactions of the chromophores of CAF and the phenoxazone antibiotics in the formation of the heterocomplexes in aqueous solution.  相似文献   

2.
Heteroassociation of antibacterial antibiotic norfloxacin with aromatic vitamins nicotinamide and flavin mononucleotide in aqueous solution was studied by 1H NMR spectroscopy (500 MHz). Equilibrium constants, induced proton chemical shifts, and thermodynamic parameters (ΔH, ΔS) for the reactions of heteroassociation of the molecules were determined on the basis of the concentration and temperature dependences of proton chemical shifts for interacting aromatic molecules. The analysis of the results obtained indicates the formation of heterocomplexes between vitamin molecules and norfloxacin owing to stacking interactions between aromatic chromophores and additional intermolecular hydrogen bonding in norfloxacin-nicotinamide. The most probable spatial structures of 1:1 norfloxacin-flavin mononucleotide and norfloxacin-nicotinamide heterocomplexes were determined by molecular modeling methods using X-PLOR software on the basis of analysis of induced proton chemical shifts.  相似文献   

3.
The heteroassociation of the antibacterial antibiotic norfloxacin with aromatic vitamins nicotineamide and flavin mononucleotide in aqueous solution has been studied by 1H NMR spectroscopy (503 MHz). Equilibrium constants, induced proton chemical shifts, and the thermodynamic parameters (deltaH, deltaS) of the heteroassociation of molecules were determined from the concentration and temperature dependences of chemical shifts of protons of interacting aromatic molecules. An analysis of the results indicates the formation of heterocomplexes between the molecules of the vitamins and norfloxacin, which is caused by stacking interactions between aromatic chromophores and an additional intermolecular hydrogen bond in the norfloxacin-nicotinamide system. Based on the analysis of induced chemical shifts of protons of molecules, the most probable spatial structures 1:1 of norfloxacin-flavin mononucleitide and norfloxacin-nicotinamide heterocomolexes were determined by the methods of molecular modeling using the X-PLOR program.  相似文献   

4.
The heteroassociation of caffeine (CAF) and the synthetic antibiotic actinocyl-bis(3-dimethylaminopropylamine) (ACT) was studied in aqueous solution by one- and two-dimensional 1H NMR spectroscopy at 500 MHz. The equilibrium reaction constants, thermodynamic parameters (H and S) of ACT heteroassociation with CAF, the limiting values of proton chemical shifts of their molecules in the heteroassociation complex, and the spatial structure of the ACT–CAF complex were determined from the experimental dependences of proton chemical shifts of the aromatic molecules on concentration and temperature. The parameters of CAF heteroassociation with the phenoxazone antibiotic actinomycin D and its synthetic analogue ACT were comparatively analyzed and conclusions were made on the crucial role of stacking interactions of the chromophores of CAF and the phenoxazone antibiotics in the formation of the heterocomplexes in aqueous solution.  相似文献   

5.
The molecular mechanism of the combined action of antibiotic and vitamin was studied by NMR spectroscopy. The heteroassociation of the antitumor antibiotic actinomycin D and flavin mononucleotide was investigated as a function of concentration and temperature by 500 MHz 1H NMR spectroscopy. The equilibrium association constant, the thermodynamic parameters (deltaH, deltaS) of heteroassociation of actinomycin D with flavin mononucleotide, and the limiting values of proton chemical shifts in the heterocomplex were determined from the concentration and temperature dependences of proton chemical shifts of molecules. The most favorable structure of the 1:1 actinomycin D-flavin mononucleotide heteroassociation complex was determined using both the molecular mechanics methods (X-PLOR software) and the limiting values of proton chemical shifts of the molecules. In the calculated structure, the planes of the chromophores of actinomycin D and flavin mononucleotide molecules in the 1:1 heterocomplex are parallel and separated from each other by a distance of about 0.34 nm. At the same time, there is a probability of formation of intermolecular hydrogen bonds in the calculated structure of 1:1 actinomycin D-flavin mononucleotide complex. The analysis of the results obtained suggests that aromatic molecules of vitamins, e.g., flavin mononucleotide, can form energetically favorable heterocomplexes with aromatic antitumor antibiotics in aqueous solution, modulating thereby the efficacy of their medical and biological action.  相似文献   

6.
A heteroassociation of antitumor antibiotic novatrone (NOV) and flavin mononucleotide (FMN) in aqueous solution was studied by one- and two-dimentional 1H NMR spectroscopy (500 MHz) to elucidate the molecular mechanism of the possible combined action of the antibiotic and vitamin. The equilibrium reaction constants, induced proton chemical shifts, and the thermodynamic parameters (deltaH and deltaS) of the NOV and FMN heteroassociation were determined from the concentration and temperature dependences of proton chemical shifts of the aromatic molecules. The most favorable structure of the 1 : 1 NOV-FMN complex was determined by both the method of molecular mechanics (X-PLOR software) and the induced proton chemical shifts of the molecules. An analysis of the results suggests that the NOV-FMN intermolecular complexes are mainly stabilized by stacking interactions of their aromatic chromophores. An additional stabilization is possible due to intermolecular hydrogen bonds. It was concluded that the aromatic molecules of vitamins, in particular, FMN, can form energetically favorable heterocomplexes with aromatic antitumor antibiotics in aqueous solutions, which could result in a modulation of their medical and biological action.  相似文献   

7.
The analysis of heteroassociation of antibiotic topotecan (TPT) with aromatic biologically active compounds (BAC): caffeine, mutagens ethidium bromide and proflavine, antibiotic daunomycin, vitamins flavin-mononucleotide and nicotinamide, has been carried out in the work using 1H NMR spectroscopy data. The equilibrium constants of heteroassociation and induced chemical shifts of the protons have been obtained in the complexes with BAC. It is found that the complex formation TPT-BAC has the nature of stacking of the chromophores, additionally stabilized in the case of proflavine by intermolecular hydrogen bond. Calculation of the basic components of the Gibbs free energy of the complexation reactions is carried out, and the factors which stabilize and destabilize the heterocomplexes of molecules are revealed.  相似文献   

8.
The interaction between anthracycline antitumor antibiotics daunomycin and novatrone and the vitamin nicotinamide has been investigated by one- and two-dimensional 1H NMR spectroscopy (500 MHz). Due to significant differences in structures of the chromophores of interacting molecules, a two-site heteroassociation model has been developed, allowing the arrangement of one and two nicotinamide molecules on the chromophore of the antibiotic. The equilibrium association constant, thermodynamical parameters (deltaH, deltaS) of the heteroassociation of nicotinamide with daunomycin and novatrone and the induced proton chemical shifts in the heterocomplexes have been determined from the concentration and temperature dependences of proton chemical shifts of interacting molecules. The most favorable structures of 1:1 nicotinamide--daunomycin and nicotinamide-novatrone heteroassociation complexes have been determined using both the molecular mechanics methods (X-PLOR software) and the calculated values of induced proton chemical shifts. Analysis of the results obtained allows one to conclude that two nicotinamide molecules cannot simultaneously bind on one side of the chromophore of antibiotic. Heterocomplexes of the vitamin with the antibiotics with a stoichiometry 1:1 are mainly stabilized by the stacking of aromatic chromophores.  相似文献   

9.
A heteroassociation of the antitumor antibiotic novatrone (NOV) and flavin mononucleotide (FMN) in aqueous solution was studied by one- and two-dimentional 1H NMR spectroscopy (500 MHz) to elucidate the molecular mechanism of the possible combined action of the antibiotic and the vitamin. The equilibrium reaction constants, the induced proton chemical shifts, and the thermodynamic parameters (ΔH and ΔS) of the NOV and FMN heteroassociation were determined from the concentration and temperature dependences of proton chemical shifts of the aromatic molecules. The most favorable structure of the 1 : 1 NOV-FMN complex was determined by both the method of molecular mechanics (X-PLOR software) and the induced proton chemical shifts of the molecules. An analysis of the results suggests that the NOV-FMN intermolecular complexes are mainly stabilized by stacking interactions of their aromatic chromophores. An additional stabilization is possible due to intermolecular hydrogen bonds. It was concluded that the aromatic molecules of vitamins, in particular, FMN, can form energetically favorable heterocomplexes with aromatic antitumor antibiotics in aqueous solutions, which could result in a modulation of their medical and biological action.  相似文献   

10.
The interaction of the anthracycline antitumor antibotics daunomycin and novatrone with the vitamin nicotinamide has been studied by one-and two-dimensional 1H NMR (500 MHz). Due to significant differences between the structures of the chromophores of interacting molecules, a two-site heteroassociation model has been developed, which implies the binding of one or several nicotinamide molecules to the chromophore of the antibiotic. The structural and thermodynamic parameters of the heteroassociation of nicotinamide with daunomycin and novatrone have been determined from the experimental concentration and temperature dependences of the 1H NMR chemical shifts of the interacting molecules. The most favorable structures of the 1:1 nicotinamide-daunomycin and nicotinamide-novatrone heterocomplexes have been found using the molecular mechanics method (X-PLOR software) and analysis of induced proton chemical shifts. The results demonstrate that two nicotinamide molecules cannot simultaneously bind on one side of the chromophore of the daunomycin or novatrone. The 1:1 heterocomplexes of the vitamin with the antibiotics are mainly stabilized by the stacking of aromatic chromophores.  相似文献   

11.
NMR spectroscopy has been used to elucidate the molecular basis of the action of caffeine (CAF) on the complexation with DNA of mutagens such as ethidium bromide, propidium iodide, proflavine and acridine orange, and anticancer drugs such as actinomycin D and daunomycin. The hetero-association of CAF and each of the aromatic ligands in 0.1 mol L(-1) phosphate buffer (pD=7.1) has been investigated as a function of concentration and temperature by 500 MHz 1H NMR spectroscopy and analysed in terms of a statistical-thermodynamic model, in which molecules form indefinite aggregates for both self-association and hetero-association. The analysis leads to determination of the equilibrium constants of hetero-association and to the values of the limiting chemical shifts of the heteroassociation of CAF with each of the aromatic molecules. The hetero-association constants between CAF and each of the aromatic drugs/dyes are found to be intermediate in magnitude between those for self-association of CAF and the corresponding drug/dye. The most probable structures of the 1:1 CAF + ligand hetero-association complexes have been determined from the calculated values of the induced limiting chemical shifts of the drug protons. Knowledge of the equilibrium constants for self-association of CAF and the aromatic ligands, for their hetero-association and their complexation with a DNA fragment, the deoxytetranucleotide 5'-d(TpGpCpA), enabled the relative content of each of the CAF-ligand and CAF-ligand-d(TGCA) complexes to be calculated as a function of CAF concentration in mixed solutions. It is concluded that, on addition of CAF to the solution, the decrease in binding of drug or mutagen with DNA is due both to competition for the binding sites by CAF and the aromatic molecules, and to formation of CAF-ligand hetero-association complexes in the mixed solution; the relative importance of each process depends on the drug or mutagen being considered.  相似文献   

12.
Biochemical systems consist of numerous elementary reactions governed by the law of mass action. However, experimentally characterizing all the elementary reactions is nearly impossible. Thus, over a century, their deterministic models that typically contain rapid reversible bindings have been simplified with non-elementary reaction functions (e.g., Michaelis-Menten and Morrison equations). Although the non-elementary reaction functions are derived by applying the quasi-steady-state approximation (QSSA) to deterministic systems, they have also been widely used to derive propensities for stochastic simulations due to computational efficiency and simplicity. However, the validity condition for this heuristic approach has not been identified even for the reversible binding between molecules, such as protein-DNA, enzyme-substrate, and receptor-ligand, which is the basis for living cells. Here, we find that the non-elementary propensities based on the deterministic total QSSA can accurately capture the stochastic dynamics of the reversible binding in general. However, serious errors occur when reactant molecules with similar levels tightly bind, unlike deterministic systems. In that case, the non-elementary propensities distort the stochastic dynamics of a bistable switch in the cell cycle and an oscillator in the circadian clock. Accordingly, we derive alternative non-elementary propensities with the stochastic low-state QSSA, developed in this study. This provides a universally valid framework for simplifying multiscale stochastic biochemical systems with rapid reversible bindings, critical for efficient stochastic simulations of cell signaling and gene regulation. To facilitate the framework, we provide a user-friendly open-source computational package, ASSISTER, that automatically performs the present framework.  相似文献   

13.
Gene regulatory, signal transduction and metabolic networks are major areas of interest in the newly emerging field of systems biology. In living cells, stochastic dynamics play an important role; however, the kinetic parameters of biochemical reactions necessary for modelling these processes are often not accessible directly through experiments. The problem of estimating stochastic reaction constants from molecule count data measured, with error, at discrete time points is considered. For modelling the system, a hidden Markov process is used, where the hidden states are the true molecule counts, and the transitions between those states correspond to reaction events following collisions of molecules. Two different algorithms are proposed for estimating the unknown model parameters. The first is an approximate maximum likelihood method that gives good estimates of the reaction parameters in systems with few possible reactions in each sampling interval. The second algorithm, treating the data as exact measurements, approximates the number of reactions in each sampling interval by solving a simple linear equation. Maximising the likelihood based on these approximations can provide good results, even in complex reaction systems.  相似文献   

14.
In many biochemical reactions occurring in living cells, number of various molecules might be low which results in significant stochastic fluctuations. In addition, most reactions are not instantaneous, there exist natural time delays in the evolution of cell states. It is a challenge to develop a systematic and rigorous treatment of stochastic dynamics with time delays and to investigate combined effects of stochasticity and delays in concrete models.We propose a new methodology to deal with time delays in biological systems and apply it to simple models of gene expression with delayed degradation. We show that time delay of protein degradation does not cause oscillations as it was recently argued. It follows from our rigorous analysis that one should look for different mechanisms responsible for oscillations observed in biological experiments.We develop a systematic analytical treatment of stochastic models of time delays. Specifically we take into account that some reactions, for example degradation, are consuming, that is: once molecules start to degrade they cannot be part in other degradation processes.We introduce an auxiliary stochastic process and calculate analytically the variance and the autocorrelation function of the number of protein molecules in stationary states in basic models of delayed protein degradation.  相似文献   

15.
Biological systems often involve chemical reactions occurring in low-molecule-number regimes, where fluctuations are not negligible and thus stochastic models are required to capture the system behaviour. The resulting models are generally quite large and complex, involving many reactions and species. For clarity and computational tractability, it is important to be able to simplify these systems to equivalent ones involving fewer elements. While many model simplification approaches have been developed for deterministic systems, there has been limited work on applying these approaches to stochastic modelling. Here, we describe a method that reduces the complexity of stochastic biochemical network models, and apply this method to the reduction of a mammalian signalling cascade and a detailed model of the process of bacterial gene expression. Our results indicate that the simplified model gives an accurate representation for not only the average numbers of all species, but also for the associated fluctuations and statistical parameters.  相似文献   

16.
A formal approach to the routine analysis of kinetic data in terms of linear compartmental systems is presented. The methods of analysis are general in that they include much of the theory in common use, such as direct solution of differential equations, integral equations, transfer functions, fitting of data to sums of exponentials, matrix solutions, etc. The key to the formalism presented lies in the fact that a basic operational unit—called “compartment”—has been defined, in terms of which physical and mathematical models as well as input and output functions can be expressed. Additional features for calculating linear combinations of functions and for setting linear dependence relations between parameters add to the versatility of this method. The actual computations for the values of model parameters to yield a least squares fit of the data are performed on a digital computer. A general computer program was developed that permits the routine fitting of data and the evolution of models.  相似文献   

17.
Biochemical systems involve chemical reactions occurring in low-number regimes, wherein fluctuations are not negligible and thus stochastic models are required to capture the system behaviour. The resulting models are often quite large and complex, involving many reactions and species. For clarity and computational tractability, it is important to be able to simplify these systems to equivalent ones involving fewer elements. While many model simplification approaches have been developed for deterministic systems, there has been limited work on applying these approaches to stochastic modelling. Here, we propose a method that reduces the complexity of stochastic biochemical network models, and apply this method to the reduction of a mammalian signalling cascade. Our results indicate that the simplified model gives an accurate representation for not only the average number of all species, but also for the associated fluctuations and statistical parameters.  相似文献   

18.
In this paper, it is shown that for a class of reaction networks, the discrete stochastic nature of the reacting species and reactions results in qualitative and quantitative differences between the mean of exact stochastic simulations and the prediction of the corresponding deterministic system. The differences are independent of the number of molecules of each species in the system under consideration. These reaction networks are open systems of chemical reactions with no zero-order reaction rates. They are characterized by at least two stationary points, one of which is a nonzero stable point, and one unstable trivial solution (stability based on a linear stability analysis of the deterministic system). Starting from a nonzero initial condition, the deterministic system never reaches the zero stationary point due to its unstable nature. In contrast, the result presented here proves that this zero-state is a stable stationary state for the discrete stochastic system, and other finite states have zero probability of existence at large times. This result generalizes previous theoretical studies and simulations of specific systems and provides a theoretical basis for analyzing a class of systems that exhibit such inconsistent behavior. This result has implications in the simulation of infection, apoptosis, and population kinetics, as it can be shown that for certain models the stochastic simulations will always yield different predictions for the mean behavior than the deterministic simulations.  相似文献   

19.
The basic pancreatic trypsin inhibitor (BPTI) was investigated by high resolution 1H NMR techniques at 360 MHz. Observation of the amide proton resonances of the polypeptide backbone showed that the globular conformation of BPTI determined by X-ray studies in single crystals is maintained in aqueous solution over the temperature range from 4 degrees to 87 degrees. NMR studies over this temperature range of the aromatic amino acid residues of BPTI. i.e. 4 tyrosines and 4 phenylalanines, led to complete assignments of all the aromatic spin systems in the protein. From this, information was obtained on the rotational motions about the C beta--Cv bond axis of the aromatic rings in the globular form of PBTI. At 25 degrees, two tyrosine rings and one phenylalanine ring are rotating rapidly on the NMR time scale. For the other rings the transitions from slow to rapid rotational motions were investigated at variable temperatures and energy barriers for these intramolecular rate processes determined. The studies of the tyrosine resonances had been described in detail in a previous publication. The present paper describes the identification of the phenylalanine resonances and comments on some technical aspects which might be of quite general interest for the analysis of highly resolved 1H NMR spectra of proteins. Data for the tyrosines and the phenylalanines are compiled in three tables, i.e. the pK alpha-values for the tyrosines, the NMR parameters for all eight aromatics, and the parameters delta G not equal to, and, where available, delta H not equal to and delta S not equal to for the rotational motions of the rings.  相似文献   

20.
Inner filter effects and their interferences in the measurement and interpretation of culture fluorescence are discussed. An approximate light intensity model for a typical open-ended culture fluorescence measuring device is developed for calculating the fluorescence response of a component of interest in a general three component solution. The model is tested using well de fined synthetic fluorescent systems. The model is then extended for correlating culture fluorescence with cell density and metabolic state of microbial cultures based on a lumping approximation. The extended model has been utilized to derive culture fluorescence parameters of yeast culture at three distinct metabolic states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号