首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mixed pasture comprising of buffel grass and a legume siratro was studied under field condition for a two-year period to know the fodder yield increase, nitrogen fixation and nitrogen balance with and without the inoculation of VA mycorrhiza to grass and Rhizobium to legume component.15N dilution technique was followed using labelled ammonium sulphate. The data showed that during the first year of the above study combined inoculation of VA mycorrhiza and Rhizobium to grass and legume respectively significantly increased the total dry matter (DM) (23,900 kg ha–1 yr–1) and total N content (308 kg ha–1 yr–1) of the mixed pasture over the uninoculated mixture. However, the above increase due to combined inoculation was maximum during second year with respect to DM yield (28,200 kg ha–1 yr–1), but the total N harvested through grass-legume mixture was comparatively lower than the first year (297 kg ha–1 yr–1). The amount of biologically fixed N was highest in the first year (79 kg ha–1 yr–1) and showed a very drastic reduction at the end of second year (39 kg ha–1 yr–1). A positive nitrogen balance was observed in the grass-legume mixture irrespective of inoculation of VA mycorrhiza and/or Rhizobium.  相似文献   

2.
Nitrogen and phosphorus budgets were developed forfour sub-catchments in the Richmond River catchmentfor two study years. The catchment is used for avariety of farming pursuits including dairying, beef,cropping, fruit, nuts, forestry, and sugar cane. Eachsub-catchment varies in hydrology, the proportion ofeach land use, and the population density whichenabled a unique opportunity to study fluxes andstorage associated with a variety of environmentalfactors. Total loadings entering each sub-catchmentvaried from 12 to 57 kg ha–1yr–1 fornitrogen and 0.25 to 6.6 kg ha–1yr–1 forphosphorus with little inter-annual variation.Averaged across the whole catchment, nitrogen fixation(47%) dominated the inputs; fertiliser (26%) andrainfall (21%) made up the next largest inputs.Fertiliser inputs dominated the phosphorus budget(65.5%); rainfall and manures making up 13% and 12%respectively. Produce dominated the outputs of bothnitrogen and phosphorus from the four sub-catchmentsbeing greater than the riverine export. The deliveryof nitrogen to catchment streams ranged from <1 to24% of the total inputs and the delivery of phosphorus to catchment streams ranged from <1 to 39%. Storage of phosphorus in catchment soils varied between –0.32 and 4.46 kg ha–1yr–1. Whendenitrification and volatilisation were estimated using data from other studies, storage of nitrogen ranged from 1 to 24 kg ha–1yr–1. Despite theepisodic nature of runoff in the sub-tropical RichmondRiver catchment, the magnitude of nutrient fluxes andstorage appear similar to other catchments of theworld which have mixed land use and relatively lowcatchment nutrient loadings.  相似文献   

3.
Butterbach-Bahl  K.  Gasche  R.  Willibald  G.  Papen  H. 《Plant and Soil》2002,240(1):117-123
During 4 years continuous measurements of N-trace gas exchange were carried out at the forest floor-atmosphere interface at the Höglwald Forest that is highly affected by atmospheric N-deposition. The measurements included spruce control, spruce limed and beech sites. Based on these field measurements and on intensive laboratory measurements of N2-emissions from the soils of the beech and spruce control sites, a total balance of N-gas emissions was calculated. NO2-deposition was in a range of –1.6 –2.9 kg N ha–1 yr–1 and no huge differences between the different sites could be demonstrated. In contrast to NO2-deposition, NO- and N2O-emissions showed a huge variability among the different sites. NO emissions were highest at the spruce control site (6.4–9.1 kg N ha–1 yr–1), lowest at the beech site (2.3–3.5 kg N ha–1 yr–1) and intermediate at the limed spruce site (3.4–5.4 kg N ha–1 yr–1). With regard to N2O-emissions, the following ranking between the sites was found: beech (1.6–6.6 kg N ha–1 yr–1) >> spruce limed (0.7–4.0 kg N ha–1 yr–1) > spruce control (0.4–3.1 kg N ha–1 yr–1). Average N-trace gas emissions (NO, NO2, N2O) for the years 1994–1997 were 6.8 kg N ha–1 yr–1 at the spruce control site, 3.6 kg N ha–1 yr–1 at the limed spruce site and 4.5 kg N ha–1 yr–1 at the beech site. Considering N2-losses, which were significantly higher at the beech (12.4 kg N ha–1 yr–1) than at the spruce control site (7.2 kg N ha–1 yr–1), the magnitude of total gaseous N losses, i.e. N2-N + NO-N + NO2-N + N2O-N, could be calculated for the first time for a forest ecosystem. Total gaseous N-losses were 14.0 kg N ha–1 yr–1 at the spruce control site and 15.5 kg N ha–1 yr–1 at the beech site, respectively. In view of the huge interannual variability of N-trace gas fluxes and the pronounced site differences in N-gas emissions it is concluded that more research is needed in order to fully understand patterns of microbial N-cycling and N-gas production/emission in forest ecosystems and mechanisms of reactions of forest ecosystems to the ecological stress factor of atmospheric N-input.  相似文献   

4.
N deposition, N transformation and N leaching in acid forest soils   总被引:9,自引:3,他引:6  
Nitrogen deposition, mineralisation, uptake and leaching were measured on a monthly basis in the field during 2 years in six forested stands on acidic soils under mountainous climate. Studies were conducted in three Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] plantations (D20: 20 year; D40: 40 yr; D60: 60 yr) on abandoned croplands in the Beaujolais Mounts; and two spruce (Picea abies Karst.) plantations (S45: 45 yr; S90: 90 yr) and an old beech (Fagus sylvatica L.) stand (B150: 150 yr) on ancient forest soils in a small catchment in the Vosges Mountains. N deposition in throughfall varied between 7–8 kg ha–1 year–1 (D20, B150, S45) and 15–21 kg ha–1 yr–1 (S90, D40, D60). N in annual litterfall varied between 20–29 kg ha–1 (D40, D60, S90), and 36–43 kg ha–1 (D20, S45, B150). N leaching below root depth varied among stands within a much larger range, between 1–9 kg ha–1 yr–1 (B150, S45, D60) and 28–66 kg ha–1 yr–1 (D40, S90, D20), with no simple relationship with N deposition, or N deposition minus N storage in stand biomass. N mineralisation was between 57–121 kg ha–1 yr–1 (S45, D40, S90) and between 176–209 kg ha–1 yr–1 in (B150, D60 and D20). The amounts of nitrogen annually mineralised and nitrified were positively related. Neither general soil parameters, such as pH, soil type, base saturation and C:N ratio, nor deposition in throughfall or litterfall were simply related to the intensity of mineralisation and/or nitrification. When root uptake was not allowed, nitrate leaching increased by 11 kg ha–1 yr–1 at S45, 36 kg ha–1 yr–1 at S90 and between 69 and 91 kg ha–1 yr–1 at D20, D40, B150 and D60, in relation to the nitrification rates of each plot. From this data set and recent data from the literature, we suggest that: high nitrification and nitrate leaching in Douglas-fir soils was likely related to the former agricultural land use. High nitrification rate but very low nitrate leaching in the old beech soil was related to intense recycling of mineralised N by beech roots. Medium nitrification and nitrate leaching in the old spruce stand was related to the average level of N deposition and to the deposition and declining health of the stand. Very low nitrification and N leaching in the young spruce stand were considered representative of fast growing spruce plantations receiving low N deposition on acidic soils of ancient coniferous forests. Consequently, we suggest that past land use and fine root cycling (which is dependent on to tree species and health) should be taken into account to explain the variability in the relation between N deposition and leaching in forests.  相似文献   

5.
The distribution of 137Cs and 239,240Pu in sediment core samples of the Finnish lakes Laukunlampi, Lovojärvi and Pääjärvi were determined. The sediment samples were collected using dry ice and liquid nitrogen freezing methods. The sediments of these lakes are annually laminated. A clear maximum concentration of 137Cs and 239,240Pu was found in sediment layers formed during 1962–1964, the years of maximum fallout, and the middle of the 1950's can be estimated from the 137Cs and 239,240Pu profiles. The highest concentrations, 11 500 and 820 pCi kg–1 dry wt for 137Cs and 239,240Pu, respectively, were found in the sediment of Laukunlampi. The vertical distribution was similar for 137Cs and 239,240Pu in the lakes investigated. A slight migration of 239,240Pu and 137Cs was found and the migration of 137Cs seems to be higher than that of 239,240Pu. The advantages of 137Cs dating method are rapidity and simplicity. 239,240Pu is preferable when the sample size is small. The agreement found between 137Cs and 239,240Pu dates and the annual laminae show that these fallout radio isotopes can be used for dating sediments formed during the past 25 years.  相似文献   

6.
Ledgard  S.F.  Sprosen  M.S.  Penno  J.W.  Rajendram  G.S. 《Plant and Soil》2001,229(2):177-187
Effects of rate of nitrogen (N) fertilizer and stocking rate on production and N2 fixation by white clover (Trifolium repens L.) grown with perennial ryegrass (Lolium perenne L.) were determined over 5 years in farmlets near Hamilton, New Zealand. Three farmlets carried 3.3 dairy cows ha–1 and received urea at 0, 200 or 400 kg N ha–1 yr–1 in 8–10 split applications. A fourth farmlet received 400 kg N ha–1 yr–1 and had 4.4 cows ha–1.There was large variation in annual clover production and total N2 fixation, which in the 0 N treatment ranged from 9 to 20% clover content in pasture and from 79 to 212 kg N fixed ha–1 yr–1. Despite this variation, total pasture production in the 0 N treatment remained at 75–85% of that in the 400 N treatments in all years, due in part to the moderating effect of carry-over of fixed N between years.Fertilizer N application decreased the average proportion of clover N derived from N2 fixation (PN; estimated by 15N dilution) from 77% in the 0 N treatment to 43–48% in the 400 N treatments. The corresponding average total N2 fixation decreased from 154 kg N ha–1 yr–1 to 39–53 kg N ha–1 yr–1. This includes N2 fixation in clover tissue below grazing height estimated at 70% of N2 fixation in above grazing height tissue, based on associated measurements, and confirmed by field N balance calculations. Effects of N fertilizer on clover growth and N2 fixation were greatest in spring and summer. In autumn, the 200 N treatment grew more clover than the 0 N treatment and N2 fixation was the same. This was attributed to more severe grazing during summer in the 0 N treatment, resulting in higher surface soil temperatures and a deleterious effect on clover stolons.In the 400 N treatments, a 33% increase in cow stocking rate tended to decrease PN from 48 to 43% due to more N cycling in excreta, but resulted in up to 2-fold more clover dry matter and N2 fixation because lower pasture mass reduced grass competition, particularly during spring.  相似文献   

7.
Sediment cores were collected from nine wetland lakes in Morocco, Tunisia and Egypt for the CASSARINA project investigating environmental change in Northern African wetlands. The cores were dated radiometrically by using natural (210Pb) and artificial (137Cs and 241Am) radionuclides. At sites in Morocco and Tunisia with mean annual rainfall totals ranging from 500–1000 mm yr–1, fallout records were generally satisfactory and it was possible to develop independent sediment chronologies based on the radiometric data alone. At the Egyptian sites, rainfall was less than 200 mm yr–1 and fallout records were much less distinct. At these sites the radiometric data could only be used to give an indication of mean sedimentation rates during the past 30–40 years. By using a combination of fallout radionuclide, pollen, and macrofossil stratigraphic records it was however possible to determine a credible sediment chronology spanning the major part of the 20th century. Applying this chronology to records of spheroidal carbonaceous particles (SCP) from the same sediment cores, the onset of significant levels of atmospheric pollution in the Nile Delta is dated in all three cores to the mid 1950s. Results from a number of lakes (Sidi Bou Rhaba, Ichkeul and Korba) revealed high and accelerating siltation rates, threatening their continued existence beyond the next few decades. In contrast, sedimentation rates at all three Nile Delta sites appear to have declined in recent decades, most probably due to the impact of the Nile barrages.  相似文献   

8.
In many Swedish lakes, the fallout of 137Cs from the Chernobyl accident in April 1986 has largely accumulated in the sediments. The availability and transfer of deposited 137Cs to biota is influenced by factors such as resuspension. The frequency of resuspension and the 137Cs-content of different fish species was studied in three shallow lakes in Uppland, central Sweden, and in one deeper lake in northern Sweden. Resuspension was measured by the use of sediment traps. Sedimentation rates measured from the traps in the shallower lakes were 5–10 times higher than normal for this type of lake, indicating that resuspension was an important factor. The decrease of the 137Cs-content in muscle tissue of pike, perch and roach was slow in each of the shallow lakes. 137Cs decreased by about 30% over a period of 2 years in the shallowest lake (maximum depth 4 m), whereas 137Cs decreased by 50% in the deeper lakes (maximum depth 10 m). The slower rates of decline of 137Cs in biota from the shallow lakes, are probably a function of sediment dynamics (mainly influenced by lake morphometry, wind direction and strength). They may be influenced, also, by bioavailability of resuspended sediment material. In the deepest northern lake, much of the 137Cs-containing material collected in the sediment traps originated from the catchment area. Resuspension was minimal, and the high activity of 137Cs in the sediment had no effect on content or decline of 137Cs in lake fish.  相似文献   

9.
Pasture swards containing perennial ryegrass (Lolium perenne L.) alone or with one of five different white clover (Trifolium repens L.) cultivars were examined for production and transfer of fixed nitrogen (N) to grass under dairy cow grazing. Grass-only swards produced 21% less than mixed clover-grass swards during the second year after sowing. Production from grass-only plots under a mowing and clipping removal regime was 44% less than from grass-only plots under grazing. Much of this difference could be attributed to N transfer. In swards without clover, the ryegrass component also decreased in favour of other grasses.The average amount of fixed N in herbage from all clover cultivars was 269 kg N ha–1 yr–1. Above-ground transfer of fixed N to grasses (via cow excreta) was estimated at 60 kg N ha–1 yr–1. Below-ground transfer of fixed N to grasses was estimated at 70 kg N ha–1 yr–1 by 15N dilution and was similar for all clover cultivars. Thus, about 50% of grass N was met by transfer of fixed N from white clover during the measurement year. Short-term measurements using a 15N foliar-labelling method indicated that below-ground N transfer was largest during dry summer conditions.  相似文献   

10.
Globally, land-use change is occurring rapidly, and impacts on biogeochemical cycling may be influenced by previous land uses. We examined differences in soil C and N cycling during long-term laboratory incubations for the following land-use sequence: indigenous forest (soil age = 1800 yr); 70-year-old pasture planted after forest clearance; 22-year-old pine (Pinus radiata) planted into pasture. No N fertilizer had been applied but the pasture contained N-fixing legumes. The sites were adjacent and received 3–6 kg ha–1 yr–1volcanic N in rain; NO3 -N leaching losses to streamwater were 5–21 kg ha–1 yr–1, and followed the order forest < pasture = pine. Soil C concentration in 0–10 cm mineral soil followed the order: pasture > pine = forest, and total N: pasture > pine > forest. Nitrogen mineralization followed the order: pasture > pine > forest for mineral soil, and was weakly related to C mineralization. Based on radiocarbon data, the indigenous forest 0–10 cm soil contained more pre-bomb C than the other soils, partly as a result of microbial processing of recent C in the surface litter layer. Heterotrophic activity appeared to be somewhat N limited in the indigenous forest soil, and gross nitrification was delayed. In contrast, the pasture soil was rich in labile N arising from N fixation by clover, and net nitrification occurred readily. Gross N cycling rates in the pine mineral soil (per unit N) were similar to those under pasture, reflecting the legacy of N inputs by the previous pasture. Change in land use from indigenous forest to pasture and pine resulted in increased gross nitrification, net nitrification and thence leaching of NO3 -N.  相似文献   

11.
Common bean (Phaseolus vulgaris L.) is able to fix 20–60 kg N ha–1 under tropical environments in Brazil, but these amounts are inadequate to meet the N requirement for economically attractive seed yields. When the plant is supplemented with N fertilizer, N2 fixation by Rhizobium can be suppressed even at low rates of N. Using the 15N enriched method, two field experiments were conducted to compare the effect of foliar and soil applications of N-urea on N2 fixation traits and seed yield. All treatments received a similar fertilization including 10 kg N ha–1 at sowing. Increasing rates of N (10, 30 and 50 kg N ha–1) were applied for both methods. Foliar application significantly enhanced nodulation, N2 fixation (acetylene reduction activity) and yield at low N level (10 kg N ha–1). Foliar nitrogen was less suppressive to nodulation, even at higher N levels, than soil N treatments. In the site where established Rhizobium was in low numbers, inoculation contributed substantially to increased N2 fixation traits and yield. Both foliar and soil methods inhibited nodulation at high N rates and did not significantly increase bean yield, when comparing low (10 kg N ha–1) and high (50 kg N ha–1) rates applied after emergence. In both experiments, up to 30 kg N ha–1 of biologically fixed N2 were obtained when low rates of N were applied onto the leaves.  相似文献   

12.
The biomass production of three common aquatic macrophytes,viz. Azolla pinnata, Eichhornia crassipes andHydrilla verticillata, was high at the prevailing environmental conditions and by the enriched water of River Ganga. The biomass production ofAzolla andEichhornia was positively correlated with the orthophosphate phosphorus and nitrate-nitrogen concentrations of the enriched water. The biomass ofAzolla andHydrilla was positively correlated with the electrical conductivity of the water. The average yield of crude protein was highest in Azolla (8,520 kg.ha–1.yr–1), and somewhat lower inEichhornia (6,520 kg.ha–1.yr–1). The annual biogas production was highest inEichhornia (44,381 litres), and somewhat lower inAzolla (17,186 litres).  相似文献   

13.
Residual P from historical farm practices hasbeen linked to elevated soluble reactivephosphorus (SRP) transport in runoff from afield study site in the Catskills Mountains,New York, U.S.A., with a P source assay indicatingthat successional forest floor biomass was themajor contributor to runoff SRP. In thispaper, we assemble hydrological and SRP budgetsthat indicate net SRP loss of 0.123 kgha–1 yr–1 occurs from the site(composed of 0.044 kg ha–1 yr–1precipitation input, with 0.143 kg ha–1yr–1 and 0.024 kg ha–1 yr–1losses in runoff and groundwater,respectively). These findings contrast withconservative P cycling reported for undisturbedforests. Coupled hydrological and SRP data areanalyzed suggesting that catchment ambient andequilibrium SRP concentrations corresponding togroundwater and long-term average runoffconcentrations are in the range capable ofcontributing to eutrophication of receivingwaters. A physically based variable sourcearea hydrological model is tested to simulateSRP export using deterministic concentrations. The three-layer model (surface runoff, shallowlateral flow, and groundwater) is parameterizedusing spatially distributed data fromadditional P source assays and fieldhydrological monitoring for the site. Differences in simulated and observed outflowand SRP export are partially explained byforest evapotranspiration and frozen soilprocesses. The field data, SRP budgets andsimulations show that sufficient residual Ppools exist to prolong net SRP loss rates untilecosystem processes re-establish moreconservative P cycling.  相似文献   

14.
Yields and retention of dissolved inorganic nitrogen (DIN: NO3 + NH4 +) and nitrate concentrations in surface runoff are summarized for 28 high elevation watersheds in the Sierra Nevada of California and Rocky Mountains of Wyoming and Colorado. Catchments ranged in elevation from 2475 to 3603 m and from 15 to 1908 ha in area. Soil cover varied from 5% to nearly 97% of total catchment area. Runoff from these snow-dominated catchments ranged from 315 to 1265 mm per year. In the Sierra Nevada, annual volume-weighted mean (AVWM) nitrate concentrations ranged from 0.5 to 13 M (overall average 5.4 M), and peak concentrations measured during snowmelt ranged from 1.0 to 38 M. Nitrate levels in the Rocky Mountain watersheds were about twice those in the Sierra Nevada; average AVWM NO3 was 9.4 M and snowmelt peaks ranged from 15 to 50 M. Mean DIN loading to Rocky Mountain watersheds, 3.6 kg ha–1 yr–1, was double the average measured for Sierra Nevada watersheds, 1.8 kg ha–1 yr–1. DIN yield in the Sierra Nevada, 0.69 kg ha–1 yr–1, was about 60% that measured in the Rocky Mountains, 1.1 kg ha–1 yr–1. Net inorganic N retention in Sierra Nevada catchments was 1.2 kg ha–1 yr–1 and represented about 55% of annual DIN loading. DIN retention in the Rocky Mountain catchments was greater in absolute terms, 2.5 kg ha–1 yr–1, and as a percentage of DIN loading, 72%.A correlation analysis using DIN yield, DIN retention and surface water nitrate concentrations as dependent variables and eight environmental features (catchment elevation, slope, aspect, roughness, area, runoff, soil cover and DIN loading) as independent variables was conducted. For the Sierra Nevada, elevation and soil cover had significant (p > 0.1) Pearson product moment correlations with catchment DIN yield, AVWM and peak snowmelt nitrate concentrations and DIN retention rates. Log-linear regression models using soil cover as the independent variable explained 82% of the variation in catchment DIN retention, 92% of the variability in AVWM nitrate and 85% of snowmelt peak NO3 . In the Rocky Mountains, soil cover was significantly (p < 0.05) correlated with DIN yield, AVWM NO3 and DIN retention expressed as a percentage of DIN loading (%DIN retention). Catchment mean slope and terrain roughness were positively correlated with steam nitrate concentrations and negatively related to %DIN retention. About 91% of the variation in DIN yield and 79% of the variability in AVWM NO3 were explained by log-linear models based on soil cover. A log-linear regression based on soil cover explained 90% of the variation of %DIN retention in the Rocky Mountains.  相似文献   

15.
The eastern U.S. receives elevated rates of Ndeposition compared to preindustrial times, yetrelatively little of this N is exported indrainage waters. Net uptake of N into forestbiomass and soils could account for asubstantial portion of the difference between Ndeposition and solution exports. We quantifiedforest N sinks in biomass accumulation andharvest export for 16 large river basins in theeastern U.S. with two separate approaches: (1)using growth data from the USDA ForestService's Forest Inventory and Analysis (FIA)program, and (2) using a model of forestnitrogen cycling (PnET-CN) linked to FIAinformation on forest age-class structure. Themodel was also used to quantify N sinks in soiland dead wood, and nitrate losses below therooting zone. Both methods agreed that netgrowth rates were highest in the relativelyyoung forests on the Schuylkill watershed, andlowest in the cool forests of northern Maine. Across the 16 watersheds, wood export removedan average of 2.7 kg N ha–1 yr–1(range: 1–5 kg N ha–1 yr–1), andstanding stocks increased by 4.0 kg N ha–1yr–1 (–3 to 8 kg N ha–1 yr–1). Together, these sinks for N in woody biomassamounted to a mean of 6.7 kg N ha–1yr–1 (2–9 kg N ha–1 yr–1), or73% (15–115%) of atmospheric N deposition. Modeled rates of net N sinks in dead wood andsoil were small; soils were only a significantnet sink for N during simulations ofreforestation of degraded agricultural sites. Predicted losses of nitrate depended on thecombined effects of N deposition, and bothshort- and long-term effects of disturbance. Linking the model with forest inventoryinformation on age-class structure provided auseful step toward incorporating realisticpatterns of forest disturbance status acrossthe landscape.  相似文献   

16.
Cerbin  S.  Balayla  D. J.  Van de Bund  W. J. 《Hydrobiologia》2003,494(1-3):111-117
Groundwater is a major influence on the hydrological, chemical and thermal regime of chalk streams in the southern U.K. However, little is currently known about the nature of the sediment delivery system within these chalk stream systems, even though sediment-related problems have been increasingly cited as a cause of habitat degradation and of declining salmonid stocks. To address this knowledge gap, suspended sediment fluxes were monitored at 4 sites within the Hampshire Avon catchment between February 1999 and August 2000. Maximum suspended sediment concentrations ranged from nearly 45 mg l–1 to 260 mg l–1. Over the study period, annual suspended sediment loads ranged from 644 to 6215 t yr–1 and annual specific sediment yields ranged from 1.4 to 12.5 t km–2 yr–1. The results show that, relative to other U.K. rivers, the study chalk streams are characterised by low suspended sediment concentrations and loads and less episodic behaviour.  相似文献   

17.
A comparative study was undertaken of the fate of fine sediment in the Ngerikiil and Ngerdorch mangrove-fringed estuaries in Babeldaob Island, Palau, Micronesia, in 2002. The mangroves comprised 3.8% of each catchment area, and in both systems, they trapped about 30% of the riverine sediment. Mangroves are important buffers protecting fringing coral reefs from excessive sedimentation. The sediment yield was significantly higher in the Ngerikiil River catchment (150 tons km–2 yr–1) that has been extensively cleared and farmed, than in Ngerdorch River catchment (1.9 tons km–2 yr–1) that was still relatively pristine during the study period.This revised version wa published online in March 2005 with corrections to the issue cover date.  相似文献   

18.
Within a long-term research project studying the biogeochemical budget of an oak-beech forest ecosystem in the eastern part of the Netherlands, the nitrogen transformations and solute fluxes were determined in order to trace the fate of atmospherically deposited NH4 + and to determine the contribution of nitrogen transformations to soil acidification.The oak-beech forest studied received an annual input of nitrogen via throughfall and stemflow of 45 kg N ha–1 yr–1, mainly as NH4 +, whereas 8 kg N ha–1 yr–1 was taken up by the canopy. Due to the specific hydrological regime resulting in periodically occurring high groundwater levels, denitrification was found to be the dominant output flux (35 kg N ha–1 yr–1). N20 emmission rate measurements indicated that 57% of this gaseous nitrogen loss (20 kg N ha–1 yr–1) was as N2O. The forest lost an annual amount of 11 kg N ha–1 yr–1 via streamwater output, mainly as N03 .Despite the acid conditions, high nitrification rates were measured. Nitrification occurred mainly in the litter layer and in the organic rich part of the mineral soil and was found to be closely correlated with soil temperature. The large amount of NH4 + deposited on the forest floor via atmospheric deposition and produced by mineralization was to a large extent nitrified in the litter layer. Almost no NH4 + reached the subsurface soil horizons. The N03 was retained, taken up or transformed mainly in the mineral soil. A small amount of N03 (9 kg N ha–1 yr–1) was removed from the system in streamwater output. A relatively small amount of nitrogen was measured in the soil water as Dissolved Organic Nitrogen.On the basis of these data the proton budget of the system was calculated using two different approaches. In both cases net proton production rates were high in the vegetation and in the litter layer of the forest ecosystem. Nitrogen transformations induced a net proton production rate of 2.4 kmol ha–1 yr–1 in the soil compartment.  相似文献   

19.
The hypothesis that SO4 desorption can explain apparent long term net SO4-S losses (5 kg·ha–1·yr–1 on average) at the Lake Laflamme catchment from 1982 to 1991 is examined. Field observations show that SO4 concentrations in the soil solution are strongly buffered during percolation through the Bf horizon. In the Bf horizon, SO4 exchange reactions between the adsorbed and aqueous compartments are rapid (hours). Most (60%) of the adsorbed SO4 may be readily desorbed with deionized water. These observations and the presence of an important adsorbed SO4-S reservoir in the Bf horizon (113 kg·ha–1) as compared with annual wet SO4-S deposition (7 kg·ha–1), suggest that on the short-term, adsorption and desorption reactions can control dissolved SO4 concentration in the Bf horizon. To examine whether SO4 adsorption/desorption could explain long-term SO4-S losses by the catchment, an aggregated Langmuir isotherm for the Bf horizon was used to calculate the catchment's resilience to changing SO4-S loads. The results indicate that the soil should adjust rapidly (within 4 years) to changing SO4-S loads and that SO4 desorption alone cannot explain long-term net SO4-S losses. Other possibilities, such as an underestimation of dry deposition or the weathering of S-bearing minerals also appear unlikely. Our results suggest a net release of SO4-S from the soil organic S reservoirs (1230 kg·ha–1) present in the catchment.  相似文献   

20.
Overstory species influence the distribution and dynamics of nutrients in forest ecosystems. Ecosystem-level estimates of Ca, Mg, and K pools and cycles in 50-year old Douglas-fir and red alder stands were used to determine the effect of overstory composition on net cation removal from the mineral soil, i.e. cation export from the soil in excess of additions. Net cation removal from Douglas-fir soil was 8 kg Ca ha–1 yr–1, 1 kg Mg ha–1 yr–1, and 0.3 kg K ha–1 yr–1. Annual cation export from soil by uptake and accumulation in live woody tissue and O horizon was of similar magnitude to leaching in soil solution. Atmospheric deposition partially off-set export by adding cations equivalent to 28–88% of cation export. Net cation removal from red alder soil was 58 kg Ca ha–1 yr–1, 9 kg Mg ha–1 yr–1, and 11 kg K ha–1 yr–1. Annual cation accumulation in live woody tissue and O horizon was three times greater than in Douglas-fir, while cation leaching in soil solution was five to eight times greater. The lack of excessive depletion of exchangeable cations in the red alder soil suggests that mineral weathering, rather than exchangeable cations, was the source of most of the removed cations. Nitric acid generated during nitrification in red alder soil led to high rates of weathering and NO3-driven cation leaching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号